Control of Messenger RNA Stability


Book Description

This is the first comprehensive review of mRNA stability and its implications for regulation of gene expression. Written by experts in the field, Control of Messenger RNA Stability serves both as a reference for specialists in regulation of mRNA stability and as a general introduction for a broader community of scientists. Provides perspectives from both prokaryotic and eukaryotic systems Offers a timely, comprehensive review of mRNA degradation, its regulation, and its significance in the control of gene expression Discusses the mechanisms, RNA structural determinants, and cellular factors that control mRNA degradation Evaluates experimental procedures for studying mRNA degradation




Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid







The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use


Book Description

Dr. Harris has played a major role in the development of this organism as a model system. Her previous version of the Chlamydomonas Sourcebook which published in 1989, has been a classic in the field and is considered required reading for anyone working with this organism. This latest edition has been expanded to include three volumes providing molecular techniques, analysis of the recently sequenced genome, and reviews of the current status of the diverse fields in which Chlamydomonas is used as a model organism. Methods for Chlamydomonas research and best practices for applications in research, including methods for culture, preservation of cultures, preparation of media, lists of inhibitors and other additives to culture media, are included. Additions to this volume also include help with common laboratory problems such as contamination, student demonstrations, and properties of particular strains and mutants. This volume is part of a 3-Volume Set (ISBN: 978-0-12-370873-1) and is also sold individually. - Expanded revision of gold standard reference - Includes latest advances in research, including completion of the genome - Provides broad perspective with studies in cell and molecular biology, genetics, plant physiology and related fields - Available as part of a 3-Volume Set or sold individually




Control of Messenger RNA Stability


Book Description

This is the first comprehensive review of mRNA stability and its implications for regulation of gene expression. Written by experts in the field, Control of Messenger RNA Stability serves both as a reference for specialists in regulation of mRNA stability and as a general introduction for a broader community of scientists. - Provides perspectives from both prokaryotic and eukaryotic systems - Offers a timely, comprehensive review of mRNA degradation, its regulation, and its significance in the control of gene expression - Discusses the mechanisms, RNA structural determinants, and cellular factors that control mRNA degradation - Evaluates experimental procedures for studying mRNA degradation




MRNA Formation and Function


Book Description

mRNA Formation and Function presents a compendium of techniques geared exclusively toward the understanding of RNA metabolism. It will be particularly useful because a number of different organisms and systems are employed. Isolation and characterization of specific RNA binding proteins RNA metabolism and associated regulatory proteins RNA detection and localization A genetic approach to RNA function




Fine-Tuning of RNA Functions by Modification and Editing


Book Description

Naturally occurring RNA always contains numerous biochemically altered nucleotides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process designated RNA modification. A large number of enzymes catalyzing the formation of these modified nucleosides or converting one canonical base into another at the posttranscriptional level have been studied for many years, but only recently have systematic and comparative studies begun. The functions of individual enzymes and/or the modified/edited nucleosides in RNA, however, have remained largely ignored. This book provides advance information on RNA modification, including the associated editing machinery, while offering the reader some perspective on the significance of such modifications in fine-tuning the structure and functions of mature RNA molecules and hence the ability to influence the efficiency and accuracy of genetic expression. Outstanding scientists who are actively working on RNA modification/editing processes have provided up-to-date information on these intriguing cellular processes that have been generated over the course of millions of years in all living organisms. Each review has been written and illustrated for a large audience of readers, not only specialists in the field, but also for advanced students or researchers who want to learn more about recent progress in RNA modification and editing.




Anatomy of Gene Regulation


Book Description

No longer simple line drawings on a page, molecular structures can now be viewed in full-figured glory, often in color and even with interactive possibilities. Anatomy of Gene Regulation is the first book to present the parts and processes of gene regulation at the three-dimensional level. Vivid structures of nucleic acids and their companion proteins are revealed in full-color, three-dimensional form. Beginning with a general introduction to three-dimensional structures, the book looks at the organization of the genome, the structure of DNA, DNA replication and transcription, splicing, protein synthesis, and ultimate protein death. Throughout, the text employs a discussion of genetics and structural mechanics. The concise and unique synthesis of information will offer insight into gene regulation, and into the development of methods to interfere with regulation at diseased states. This textbook and its accompanying web site are appropriate for both undergraduate and graduate students in genetics, molecular biology, structural biology, and biochemistry courses.




Epitranscriptomics


Book Description

This book reviews a novel and exciting field of cellular and molecular biology called epitranscriptomics, which focuses on changes in an organism’s cells resulting from the posttranscriptional modification of cellular RNA. RNA-binding proteins (RBPs) play a crucial role in these posttranscriptional modifications and also support several cellular processes necessary for maintaining RNA homeostasis. Exploring the mechanisms underlying RNA modifications and RBP function is an emerging area of biomedical research, taking the study of gene regulation a step beyond epigenetics. This book reveals that the RNA molecule is not just an information-carrying molecule with some secondary structures. Accordingly, how RNA is modified, regulated, packaged, and controlled is an important aspect. Leading experts address questions such as where the over 170 distinct posttranscriptional RNA modifications are located on the genome, what percentage of mRNAs and noncoding RNAs these modifications include, and how an RNA modification impacts a person’s biology. In closing, the book reviews the role of RNA modifications and RBPs in a variety of diseases and their pathogenesis. Addressing some of the most exciting challenges in epitranscriptomics, this book provides a valuable and engaging resource for researchers in academia and industry studying the phenomena of RNA modification.




Posttranscriptional Gene Regulation


Book Description

2.4 Regulation of Transcription by Termination2.4.1 Transcription Attenuation, Promoter Upstream/Associated Transcription, and Pausing of RNApII; 2.4.2 Alternative Polyadenylation and Termination; 2.5 Mechanisms of Termination by Other RNA Polymerases; 2.6 Future Perspectives; Acknowledgments; References; 3: Posttranscriptional Gene Regulation by an Editor: ADAR and its Role in RNA Editing; 3.1 Introduction; 3.2 The RNA Editing Kinship; 3.3 The ADAR Gene Family; 3.4 The Role of RNA in the A-to-I Editing Mechanism; 3.5 Splice Site Alterations.