Discrete Convex Analysis


Book Description

Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.




Foundations of Mathematical Optimization


Book Description

Many books on optimization consider only finite dimensional spaces. This volume is unique in its emphasis: the first three chapters develop optimization in spaces without linear structure, and the analog of convex analysis is constructed for this case. Many new results have been proved specially for this publication. In the following chapters optimization in infinite topological and normed vector spaces is considered. The novelty consists in using the drop property for weak well-posedness of linear problems in Banach spaces and in a unified approach (by means of the Dolecki approximation) to necessary conditions of optimality. The method of reduction of constraints for sufficient conditions of optimality is presented. The book contains an introduction to non-differentiable and vector optimization. Audience: This volume will be of interest to mathematicians, engineers, and economists working in mathematical optimization.




Convex Analysis and Variational Problems


Book Description

This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.




Convex Analysis


Book Description

Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.




Convex Analysis and Mathematical Economics


Book Description

On February 20, 1978, the Department of Econometrics of the University of Tilburg organized a symposium on Convex Analysis and Mathematical th Economics to commemorate the 50 anniversary of the University. The general theme of the anniversary celebration was "innovation" and since an important part of the departments' theoretical work is con centrated on mathematical economics, the above mentioned theme was chosen. The scientific part of the Symposium consisted of four lectures, three of them are included in an adapted form in this volume, the fourth lec ture was a mathematical one with the title "On the development of the application of convexity". The three papers included concern recent developments in the relations between convex analysis and mathematical economics. Dr. P.H.M. Ruys and Dr. H.N. Weddepohl (University of Tilburg) study in their paper "Economic theory and duality", the relations between optimality and equilibrium concepts in economic theory and various duality concepts in convex analysis. The models are introduced with an individual facing a decision in an optimization problem. Next, an n person decision problem is analyzed, and the following concepts are defined: optimum, relative optimum, Nash-equilibrium, and Pareto-optimum.




Convex Analysis and Monotone Operator Theory in Hilbert Spaces


Book Description

This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.




An Introduction to Mathematical Analysis for Economic Theory and Econometrics


Book Description

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory




Mathematical Optimization and Economic Analysis


Book Description

"Mathematical Optimization and Economic Analysis" is a self-contained introduction to various optimization techniques used in economic modeling and analysis such as geometric, linear, and convex programming and data envelopment analysis. Through a systematic approach, this book demonstrates the usefulness of these mathematical tools in quantitative and qualitative economic analysis. The book presents specific examples to demonstrate each technique’s advantages and applicability as well as numerous applications of these techniques to industrial economics, regulatory economics, trade policy, economic sustainability, production planning, and environmental policy. Key Features include: - A detailed presentation of both single-objective and multiobjective optimization; - An in-depth exposition of various applied optimization problems; - Implementation of optimization tools to improve the accuracy of various economic models; - Extensive resources suggested for further reading. This book is intended for graduate and postgraduate students studying quantitative economics, as well as economics researchers and applied mathematicians. Requirements include a basic knowledge of calculus and linear algebra, and a familiarity with economic modeling.




Convex Duality and Financial Mathematics


Book Description

This book provides a concise introduction to convex duality in financial mathematics. Convex duality plays an essential role in dealing with financial problems and involves maximizing concave utility functions and minimizing convex risk measures. Recently, convex and generalized convex dualities have shown to be crucial in the process of the dynamic hedging of contingent claims. Common underlying principles and connections between different perspectives are developed; results are illustrated through graphs and explained heuristically. This book can be used as a reference and is aimed toward graduate students, researchers and practitioners in mathematics, finance, economics, and optimization. Topics include: Markowitz portfolio theory, growth portfolio theory, fundamental theorem of asset pricing emphasizing the duality between utility optimization and pricing by martingale measures, risk measures and its dual representation, hedging and super-hedging and its relationship with linear programming duality and the duality relationship in dynamic hedging of contingent claims




Finite Dimensional Convexity and Optimization


Book Description

This book discusses convex analysis, the basic underlying structure of argumentation in economic theory. Convex analysis is also common to the optimization of problems encountered in many applications. The text is aimed at senior undergraduate students, graduate students, and specialists of mathematical programming who are undertaking research into applied mathematics and economics. The text consists of a systematic development in eight chapters, and contains exercises. The book is appropriate as a class text or for self-study.