Wall-pressure Fluctuations and Pressure-velocity Correlations in a Turbulent Boundary Layer


Book Description

This experimental study was carried out at a free-stream Mach number of 0.6 and a Reynolds number per foot of 3.45 x 106. The magnitudes of the wall-pressure fluctuations agree with the Lilley-Hodgson theoretical results. Space-time correlations of the wall-pressure fluctuations generally agree with Willmarth's results for longitudinal separation distances. The convection velocity of the fluctuations is found to increase with increasing separation distances, and its significance is explained. Measurements with the longitudinal component of the velocity fluctuations indicate that the contributions to the wall-pressure fluctuations are from two regions, an inner region near the wall and an outer region linked with the intermittency.













Physics of Separated Flows — Numerical, Experimental, and Theoretical Aspects


Book Description

This volume contains 37 contributions in which the research work is summarized which has been carried out between 1984 and 1990 in the Priority Research Program "Physik abgeloster Stromungen" of the Deutsche Forschungsgemeinschaft (DFG, German Research Society). The aim of the Priority Research Program was the inten sive research of the whole range of phenomena associated with separated flows. Physi cal models as well as prediction methods had to be developed based on detailed experi mental investigations. It was in accordance with the main concept of the research program that scientists working on problems of separated flows in different technical areas of application participated in this program. The following fields have been represented in the program: aerodynamics of wings and bodies, aerodynamics of auto mobiles, turbomachinery, ship hydrodynamics, hydraulics, internal flows, heat exchan gers, bio-fluid-dynamics, aerodynamics of buildings and structures. In order to concentrate on problems common in all those areas the emphasis of the program was on basic research dealing with generic geometric configurations showing the fundamental physical phenomena of separated flows. The engagement and enthusiasm of all participating scientists are highly appreciated. The program was organized such that all researchers met once a year to report on the progress of their work. Special thanks ought to go to Prof. E. A. Muller (Gottingen), Prof. H. Oertel jun. (Braunschweig), Dr. W. Schmidt (Dornier), Dr. H. -W. Stock (Dornier) and Dr. B. Wagner (Dornier), who had the functions of referees on those annual meetings.




On the Generation of Wall Pressure Fluctuations for Turbulent Boundary Layers Over Rough Walls


Book Description

The study of pressure-velocity correlation in turbulent flow was extended to turbulent boundary layer flow over a roughened wall in the absence of a longitudinal pressure gradient. The results obtained are qualitatively similar to those previously measured over smooth walls. A theory is presented to partially explain the behavior of the measured correlations in both the smooth-wall and rough-wall cases.







Direct Numerical Simulation of Turbulent Flow Over a Backward-facing Step


Book Description

A three-dimensional, turbulent flow in a channel with a sudden expansion was studied by direct numerical simulation of the incompressible Navier-Stokes equations. The objective of this study was to provide statistical data of backwardfacing step flow for turbulence modelling. Additionally, analysis of the statistical and dynamical properties of the flow is performed. The Reynolds number of the main simulation was Reh = 9000, based on the step height and mean inlet velocity, with the expansion ratio ER = 2:0. The discretisation is performed using the spectral/hp element method with stiffly-stable velocity correction scheme for time integration. The inlet boundary condition is a fully turbulent velocity and pressure field regenerated from a plane downstream of the inlet. A constant flowrate was ensured by applying Stokes flow correction in the inlet regeneration area. Time and spanwise averaged results revealed, apart from the primary recirculation bubble, secondary and tertiary corner eddies. Streamlines show an additional small eddy at the downstream tip of the secondary corner eddy, with the same circulation direction as the secondary vortex. The analysis of the 3D, timeonly average shows the wavy spanwise structure of both primary and secondary recirculation bubble, that results in spanwise variations of the mean reattachment location. The visualisation of spanwise averaged pressure uctuations and streamwise velocity showed that the interaction of vortices with the recirculation bubble is responsible for the apping of the reattachment position. The characteristic frequency St = 0:078 was found. The analysis of small-scale energy transfer was performed to reveal large backscatter regions in strong Reynolds stress areas in the mixing layer. High correlation of small-scale transfer with non-linear interaction of large-scale velocity and small-scale vorticity was found. The data of the flow fields was archived. It contains the averages for velocities, pressure and Reynolds stress tensor, as well as 3D instantaneous pressure and velocity history.