Counterexamples in Calculus


Book Description

Counterexamples in Calculus serves as a supplementary resource to enhance the learning experience in single variable calculus courses. This book features carefully constructed incorrect mathematical statements that require students to create counterexamples to disprove them. Methods of producing these incorrect statements vary. At times the converse of a well-known theorem is presented. In other instances crucial conditions are omitted or altered or incorrect definitions are employed. Incorrect statements are grouped topically with sections devoted to: Functions, Limits, Continuity, Differential Calculus and Integral Calculus. This book aims to fill a gap in the literature and provide a resource for using counterexamples as a pedagogical tool in the study of introductory calculus.




Counterexamples in Analysis


Book Description

These counterexamples deal mostly with the part of analysis known as "real variables." Covers the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, functions of 2 variables, plane sets, more. 1962 edition.




CounterExamples


Book Description

This book provides a one-semester undergraduate introduction to counterexamples in calculus and analysis. It helps engineering, natural sciences, and mathematics students tackle commonly made erroneous conjectures. The book encourages students to think critically and analytically, and helps to reveal common errors in many examples. In this book, the authors present an overview of important concepts and results in calculus and real analysis by considering false statements, which may appear to be true at first glance. The book covers topics concerning the functions of real variables, starting with elementary properties, moving to limits and continuity, and then to differentiation and integration. The first part of the book describes single-variable functions, while the second part covers the functions of two variables. The many examples presented throughout the book typically start at a very basic level and become more complex during the development of exposition. At the end of each chapter, supplementary exercises of different levels of complexity are provided, the most difficult of them with a hint to the solution. This book is intended for students who are interested in developing a deeper understanding of the topics of calculus. The gathered counterexamples may also be used by calculus instructors in their classes.




Theorems and Counterexamples in Mathematics


Book Description

The gratifying response to Counterexamples in analysis (CEA) was followed, when the book went out of print, by expressions of dismay from those who were unable to acquire it. The connection of the present volume with CEA is clear, although the sights here are set higher. In the quarter-century since the appearance of CEA, mathematical education has taken some large steps reflected in both the undergraduate and graduate curricula. What was once taken as very new, remote, or arcane is now a well-established part of mathematical study and discourse. Consequently the approach here is designed to match the observed progress. The contents are intended to provide graduate and ad vanced undergraduate students as well as the general mathematical public with a modern treatment of some theorems and examples that constitute a rounding out and elaboration of the standard parts of algebra, analysis, geometry, logic, probability, set theory, and topology. The items included are presented in the spirit of a conversation among mathematicians who know the language but are interested in some of the ramifications of the subjects with which they routinely deal. Although such an approach might be construed as demanding, there is an extensive GLOSSARY jlNDEX where all but the most familiar notions are clearly defined and explained. The object ofthe body of the text is more to enhance what the reader already knows than to review definitions and notations that have become part of every mathematician's working context.







Counterexamples in Topology


Book Description

Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.




Elementary Analysis


Book Description




Counterexamples in Probability and Real Analysis


Book Description

A counterexample is any example or result that is the opposite of one's intuition or to commonly held beliefs. Counterexamples can have great educational value in illuminating complex topics that are difficult to explain in a rigidly logical, written presentation. For example, ideas in mathematical sciences that might seem intuitively obvious may be proved incorrect with the use of a counterexample. This monograph concentrates on counterexamples for use at the intersection of probability and real analysis, which makes it unique among such treatments. The authors argue convincingly that probability theory cannot be separated from real analysis, and this book contains over 300 examples related to both the theory and application of mathematics. Many of the examples in this collection are new, and many old ones, previously buried in the literature, are now accessible for the first time. In contrast to several other collections, all of the examples in this book are completely self-contained--no details are passed off to obscure outside references. Students and theorists across fields as diverse as real analysis, probability, statistics, and engineering will want a copy of this book.




Paradoxes and Sophisms in Calculus


Book Description

Paradoxes and Sophisms in Calculus offers a delightful supplementary resource to enhance the study of single variable calculus. By the word paradox the [Author];s mean a surprising, unexpected, counter-intuitive statement that looks invalid, but in fact is true. The word sophism describes intentionally invalid reasoning that looks formally correct, but in fact contains a subtle mistake or flaw. In other words, a sophism is a false proof of an incorrect statement. A collection of over fifty paradoxes and sophisms showcases the subtleties of this subject and leads students to contemplate the underlying concepts. A number of the examples treat historically significant issues that arose in the development of calculus, while others more naturally challenge readers to understand common misconceptions. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored.




Counterexamples in Measure and Integration


Book Description

Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to René Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).