Frontiers in Number Theory, Physics, and Geometry II


Book Description

Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.




Spectral Geometry


Book Description







Mathematical Reviews


Book Description




Introduction à la géométrie hyperbolique et aux surfaces de Riemann


Book Description

Avec ce livre, les auteurs ont voulu présenter une introduction élémentaire à des notions qui servent depuis longtemps de base à des recherches en mathématiques (géométrie différentielle et géométrie algébrique) et en physique théorique. On peut noter que le plan hyperbolique (introduit par Lobatchevski en 1826) d'une part, les surfaces de Riemann (1851) d'autre part, sont les premiers exemples d'objets géométriques qui ne se présentent pas comme des figures de l'espace usuel, mais au contraire se substituent à lui, devenant ainsi le lieu d'une nouvelle géométrie. Le lien entre ces deux notions fut découvert par Poincaré en 1881. Les objets d'étude proposés dans ce livre sont d'abord les géodésiques et les horocycles du plan hyperbolique, ses isométries, puis les courbes du plan hyperbolique et leur courbure. Un chapitre est ensuite consacré aux espaces hyperbolique de dimension 3 et plus. Dans la partie sur les surfaces de Riemann, les auteurs proposent notamment l'étude des revêtements ramifiés, puis celle de la classification des surfaces par le genre et par la nature du revêtement universel (c'est là que se fait le lien avec le plan hyperbolique) ; la classification plus fine des structures conformes est abordée dans le cas du tore, ce qui donne l'occasion de présenter la théorie des fonctions elliptiques, et de l'anneau, où on déduit de la classification le grand théorème de Picard. Plusieurs applications à la théorie des surfaces minimales de l'espace euclidien sont données en complément. Cette introduction à la géométrie hyperbolique et aux surfaces de Riemann est la première qui mette ces deux sujets à la portée d'étudiants de M1 (quatrième année) de mathématiques, sans exiger d'eux plus qu'une connaissance de la géométrie euclidienne et une familiarité minimale avec les fonctions analytiques. L'ouvrage comporte 117 exercices, avec des indications.




Travaux mathématiques


Book Description




From Riemann to Differential Geometry and Relativity


Book Description

This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.







Dichronauts


Book Description

Seth is a surveyor, along with his friend Theo, a leech-like creature running through his skull who tells Seth what lies to his left and right. Theo, in turn, relies on Seth for mobility, and for ordinary vision looking forwards and backwards. Like everyone else in their world, they are symbionts, depending on each other to survive. In the universe containing Seth's world, light cannot travel in all directions: there is a “dark cone” to the north and south. Seth can only face to the east (or the west, if he tips his head backwards). If he starts to turn to the north or south, his body stretches out across the landscape, and to rotate as far as north-north-east is every bit as impossible as accelerating to the speed of light. Every living thing in Seth’s world is in a state of perpetual migration as they follow the sun’s shifting orbit and the narrow habitable zone it creates. Cities are being constantly disassembled at one edge and rebuilt at the other, with surveyors mapping safe routes ahead. But when Seth and Theo join an expedition to the edge of the habitable zone, they discover a terrifying threat: a fissure in the surface of the world, so deep and wide that no one can perceive its limits. As the habitable zone continues to move, the migration will soon be blocked by this unbridgeable void, and the expedition has only one option to save its city from annihilation: descend into the unknown.




An Eassay on the Psychology of Invention in the Mathematical Field


Book Description

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.