Covalent Organic Frameworks


Book Description

Rational synthesis of extended arrays of organic matter in bulk, solution, crystals, and thin films has always been a paramount goal of chemistry. The classical synthetic tools to obtain long-range regularity are, however, limited to noncovalent interactions, which usually yield structurally more random products. Hence, a combination of porosity and regularity in organic covalently bonded materials requires not only the design of molecular building blocks that allow for growth into a nonperturbed, regular geometry but also a condensation mechanism that progresses under reversible, thermodynamic, self-optimizing conditions. Covalent organic frameworks (COFs), a variety of 2D crystalline porous materials composed of light elements, resemble an sp2-carbon-based graphene sheet but have a different molecular skeleton formed by orderly linkage of building blocks to constitute a flat organic sheet. COFs have attracted considerable attention in the past decade because of their versatile applications in gas storage and separation, catalysis, sensing, drug delivery, and optoelectronic materials development. Compared to other porous materials, COFs allow for atomically precise control of their architectures by changing the structure of their building blocks, whereby the shapes and sizes of their pores can be well-tuned. Covalent Organic Frameworks is a compilation of different topics in COF research, from COF design and synthesis, crystallization, and structural linkages to the theory of gas sorption and various applications of COFs, such as heterogeneous catalysts, energy storage (e.g., semiconductors and batteries), and biomedicine. This handbook will appeal to anyone interested in nanotechnology and new materials of gas adsorption and storage, heterogeneous catalysts, electronic devices, and biomedical devices.




Introduction to Reticular Chemistry


Book Description

A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.




Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers


Book Description

Metal–organic frameworks (MOFs) are crystalline porous materials constructed from metal ions/clusters and organic linkers, combining the merits of both organic and inorganic components. Due to high porosity, rich functionalities, well-defined open channels and diverse structures, MOFs show great potentials in field such as gas storage and separation, catalysis, and sensing. Combining them with polymers tunes their chemical, mechanical, electrical and optical properties, and endows MOFs with processability. Covalent organic frameworks (COFs) are crystalline porous materials built from organic molecular units with diverse structures and applications. Hybrid materials with intriguing properties can be achieved by appropriate preparation methods and careful selection of MOFs/COFs and polymers, broadening their potential applications. This book documents the latest research progress in MOF/COF-polymer hybrid materials and reviews and summarises hybridization strategies to achieve MOF/COF polymeric composites. It also introduces various applications and potential applicable scenarios of hybrid MOF/COF polymers. Hybrid Metal–Organic Framework and Covalent Organic Framework Polymers offers an overview to readers who are new to this field, and will appeal to graduate students and researchers working on porous materials, polymers, hybrid materials, and supramolecular chemistry.




Comprehensive Supramolecular Chemistry II


Book Description

Comprehensive Supramolecular Chemistry II, Second Edition, Nine Volume Set is a ‘one-stop shop’ that covers supramolecular chemistry, a field that originated from the work of researchers in organic, inorganic and physical chemistry, with some biological influence. The original edition was structured to reflect, in part, the origin of the field. However, in the past two decades, the field has changed a great deal as reflected in this new work that covers the general principles of supramolecular chemistry and molecular recognition, experimental and computational methods in supramolecular chemistry, supramolecular receptors, dynamic supramolecular chemistry, supramolecular engineering, crystallographic (engineered) assemblies, sensors, imaging agents, devices and the latest in nanotechnology. Each section begins with an introduction by an expert in the field, who offers an initial perspective on the development of the field. Each article begins with outlining basic concepts before moving on to more advanced material. Contains content that begins with the basics before moving on to more complex concepts, making it suitable for advanced undergraduates as well as academic researchers Focuses on application of the theory in practice, with particular focus on areas that have gained increasing importance in the 21st century, including nanomedicine, nanotechnology and medicinal chemistry Fully rewritten to make a completely up-to-date reference work that covers all the major advances that have taken place since the First Edition published in 1996




Encyclopedia of Interfacial Chemistry


Book Description

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions




Porous Organic Frameworks


Book Description

This book describes the design, synthesis, characterization and applications of porous organic frameworks (POFs). Special emphasis is placed on the utilization of porous materials for CO2 capture and CH4 and H2 storage, which have promising potential for addressing the issues of environmental degradation and climate change. It also includes two chapters introducing the properties of POFs and defining the principles of synthesis, as well as a chapter dealing with post-modified POFs. This book is intended for those readers who are interested in porous materials and their applications. Guangshan Zhu is a professor at the College of Chemistry, Jilin University, China.




Metal-Organic Frameworks


Book Description

Some 80,000 metal-organic frameworks (MOFs) have been reported as of 2020. With intriguing structures and fascinating properties, MOFs are poised to be a defining material of the 21st century with a great deal of commercial potential from methane fuel automobile tanks to carbon capturing. Metal-Organic Frameworks provides an introduction to the complex world of MOFs. Researchers new to MOFs can use this work as a jumping-off point for theoretical study or applied research. The work is broad and expansive in scope, but inclusive and comprehensive in detail. The authors provide a personal perspective of MOF research that provides a strong foundation in the basic methods and themes as well as directs the reader in how to think about MOFs. Sixteen MOF structures are animated, providing more clarity into the dimensionality of MOFs. Accompanying links take the reader to additional 3-D structures provided by The Cambridge Crystallographic Data Centre (CCDC).




Modular Chemistry


Book Description

Modular Chemistry: the First Steps In recent years, there has been increasing interest among chemists, physicists, materials scientists, biologists, engineers, and others in the assembly of well defmed, relatively large functional structures from repetitive units that themselves are molecules of some complexity. Using the dictionary defmition of a module (a detachable section, compartment, or unit with a specific purpose or function, and in electronics, a compact assembly functioning as a component of a larger unit) [1], we feel that this newly emerging field of endeavor could be called "modular chemistry" [2]. The NATO Advanced Research Workshop on Modular Chemistry that was held on September 9 to 12, 1995, at Aspen Lodge near Estes Park, Colorado, was meant to bring together prominent contributors to modular chemistry as it is being born, and to examine the associated birth pangs. It was concluded that although real, these are not nearly as bad as giving birth to a hedgehog tail first, and that the ultimate rewards were likely to be far more satisfying in terms of new ideas and enabling methodology. The level of excitement about the possibilities that are opening up for modular chemists, and also the challenge involved, are perhaps best documented by noting that the planned discussion periods at the workshop were as long as the oral presentation periods, and yet, each discussion ran over the allocated time.




Introduction to Porous Materials


Book Description

The first comprehensive textbook on the timely and rapidly developing topic of inorganic porous materials This is the first textbook to completely cover a broad range of inorganic porous materials. It introduces the reader to the development of functional porous inorganic materials, from the synthetic zeolites in the 50’s, to today’s hybrid materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and related networks. It also provides the necessary background to understand how porous materials are organized, characterized, and applied in adsorption, catalysis, and many other domains. Additionally, the book explains characterization and application from the materials scientist viewpoint, giving the reader a practical approach on the characterization and application of the respective materials. Introduction to Inorganic Porous Materials begins by describing the basic concepts of porosity and the different types of pores, surfaces, and amorphous versus crystalline materials, before introducing readers to nature’s porous materials. It then goes on to cover everything from adsorption and catalysis to amorphous materials such as silica to inorganic carbons and Periodic Mesoporous Organosilicas (PMOs). It discusses the synthesis and applications of MOFs and the broad family of COFs. It concludes with a look at future prospects and emerging trends in the field. The only complete book of its kind to cover the wide variety of inorganic and hybrid porous materials A comprehensive reference and outstanding tool for any course on inorganic porous materials, heterogeneous catalysis, and adsorption Gives students and investigators the opportunity to learn about porous materials, how to characterize them, and understand how they can be applied in different fields Introduction to Inorganic Porous Materials is an excellent book for students and professionals of inorganic chemistry and materials science with an interest in porous materials, functional inorganic materials, heterogeneous catalysis and adsorption, and solid state characterization techniques.




Metal-Organic Frameworks


Book Description

Metal-organic frameworks represent a new class of materials that may solve the hydrogen storage problem associated with hydrogen-fueled vehicles. In this first definitive guide to metal-organic framework chemistry, author L. MacGillivray addresses state-of-art developments in this promising technology for alternative fuels. Providing professors, graduate and undergraduate students, structural chemists, physical chemists, and chemical engineers with a historical perspective, as well as the most up-to-date developments by leading experts, Metal-Organic Frameworks examines structure, symmetry, supramolecular chemistry, surface engineering, metal-organometallic frameworks, properties, and reactions.