Bayesian Filtering and Smoothing


Book Description

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.




Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA


Book Description

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.




Spatiotemporal Random Fields


Book Description

Spatiotemporal Random Fields: Theory and Applications, Second Edition, provides readers with a new and updated edition of the text that explores the application of spatiotemporal random field models to problems in ocean, earth, and atmospheric sciences, spatiotemporal statistics, and geostatistics, among others. The new edition features considerable detail of spatiotemporal random field theory, including ordinary and generalized models, as well as space-time homostationary, isostationary and hetrogeneous approaches. Presenting new theoretical and applied results, with particular emphasis on space-time determination and interpretation, spatiotemporal analysis and modeling, random field geometry, random functionals, probability law, and covariance construction techniques, this book highlights the key role of space-time metrics, the physical interpretation of stochastic differential equations, higher-order space-time variability functions, the validity of major theoretical assumptions in real-world practice (covariance positive-definiteness, metric-adequacy etc.), and the emergence of interdisciplinary phenomena in conditions of multi-sourced real-world uncertainty. - Contains applications in the form of examples and case studies, providing readers with first-hand experiences - Presents an easy to follow narrative which progresses from simple concepts to more challenging ideas - Includes significant updates from the previous edition, including a focus on new theoretical and applied results




Gaussian Markov Random Fields


Book Description

Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie




Modelling Longitudinal and Spatially Correlated Data


Book Description

Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.




Advances and Challenges in Space-time Modelling of Natural Events


Book Description

This book arises as the natural continuation of the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place in Toledo (Spain) in March 2010. This Spring School above all focused on young researchers (Master students, PhD students and post-doctoral researchers) in academics, extra-university research and the industry who are interested in learning about recent developments, new methods and applications in spatial statistics and related areas, and in exchanging ideas and findings with colleagues.




Spatiotemporal Analysis of Extreme Hydrological Events


Book Description

Spatio-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. - Presents spatio-temporal processes, including multivariate dynamic modelling - Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work - Includes a variety of case studies making the context of the book relatable to everyday working situations




Handbook of Spatial Statistics


Book Description

Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro




Spatio-temporal Design


Book Description

A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient Data Acquisition: Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data. Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.