Crash Causal Factors: Crash Frequency, Crash Severity and Crash Collision Models


Book Description

"This study examined the variables related to roadway geometry, environmental, driver and traffic factors to identify crash causal factors. It relied on three years of crash data from the Arkansas Highway Transportation Department (AHTD) and analyzed nonjunctions of rural and urban US highway systems. In the first part of this study, negative binomial modeling technique was used to model the frequency of crash occurrence. To further analyze the crash factors this study also analyzed crash severity and collision types. The second part identified the factors responsible for severe crashes and fatalities including using the binary logistic regression modeling technique. The third part used the multinomial logistic regression modeling technique to identify the factors associated with specific collision types (single vehicle, head-on, rear-end, sideswipe-same, and sideswipe-opposite direction). The crash data were analyzed statistically, and the factors significant for crash frequency proved to be surface width, roughness, left and right shoulder widths, road segment length, and Annual Average Daily Traffic. Driver related factors such as age, gender, restraint type, and alcohol consumption were significant in severe crashes. Variables such as horizontal and vertical road curvature, wet road surface, and darkness differentiated single-vehicle collisions from multi-vehicle collisions. This study clearly indicated the importance of using different analysis techniques to identify the main factors responsible for crashes"--Abstract, leaf iii.




Managing Speed


Book Description

TRB Special Report 254 - Managing Speed: Review of Current Practices for Setting and Enforcing Speed Limits reviews practices for setting and enforcing speed limits on all types of roads and provides guidance to state and local governments on appropriate methods of setting speed limits and related enforcement strategies. Following an executive summary, the report is presented in six chapters and five appendices.




Highway and Traffic Safety


Book Description

Transportation Research Record contains the following papers: Method for identifying factors contributing to driver-injury severity in traffic crashes (Chen, WH and Jovanis, PP); Crash- and injury-outcome multipliers (Kim, K); Guidelines for identification of hazardous highway curves (Persaud, B, Retting, RA and Lyon, C); Tools to identify safety issues for a corridor safety-improvement program (Breyer, JP); Prediction of risk of wet-pavement accidents : fuzzy logic model (Xiao, J, Kulakowski, BT and El-Gindy, M); Analysis of accident-reduction factors on California state highways (Hanley, KE, Gibby, AR and Ferrara, T); Injury effects of rollovers and events sequence in single-vehicle crashes (Krull, KA, Khattack, AJ and Council, FM); Analytical modeling of driver-guidance schemes with flow variability considerations (Kaysi, I and Ail, NH); Evaluating the effectiveness of Norway's speak out! road safety campaign : The logic of causal inference in road safety evaluation studies (Elvik, R); Effect of speed, flow, and geometric characteristics on crash frequency for two-lane highways (Garber, NJ and Ehrhart, AA); Development of a relational accident database management system for Mexican federal roads (Mendoza, A, Uribe, A, Gil, GZ and Mayoral, E); Estimating traffic accident rates while accounting for traffic-volume estimation error : a Gibbs sampling approach (Davis, GA); Accident prediction models with and without trend : application of the generalized estimating equations procedure (Lord, D and Persaud, BN); Examination of methods that adjust observed traffic volumes on a network (Kikuchi, S, Miljkovic, D and van Zuylen, HJ); Day-to-day travel-time trends and travel-time prediction form loop-detector data (Kwon, JK, Coifman, B and Bickel, P); Heuristic vehicle classification using inductive signatures on freeways (Sun, C and Ritchie, SG).







Vehicle Crash Mechanics


Book Description

Governed by strict regulations and the intricate balance of complex interactions among variables, the application of mechanics to vehicle crashworthiness is not a simple task. It demands a solid understanding of the fundamentals, careful analysis, and practical knowledge of the tools and techniques of that analysis. Vehicle Crash Mechanics s




Traffic Crash Modeling Considering Inconsistent Observations, Interaction Behavior, and Nonlinear Relationships


Book Description

Traffic collisions are a worldwide issue that can cause injury and death, which leads to billions of dollars in damages every year. Significant research efforts have been undertaken to develop and utilize statistical modeling techniques for analyzing the characteristics of crash count data. While these modeling techniques have been providing meaningful outputs, improvements on these modeling methods still need to better understand the crash risk and the contributing factors. Five important issues in crash data modeling are identified in this research. The first two issues are over or under dispersion with crash data and excess zeros within crash records. Considering that they have been well studied in the previous research, this study focuses on the remaining three major issues. The first one is relevant to the partial observations of multiple processes, i.e. crash data may be collected by different agencies that create multiple data sources and may be inconsistent. A modeling mechanism that takes advantage of all datasets for better estimation results is highly desirable. The second one is an interaction issue. Some collisions are single vehicle crashes, such as off-road crashes and rollover incidents, and some collisions involve interaction behavior, such as the Animal-Vehicle Collision (AVC) and the Vehicle-Vehicle Collision. The characteristics of crashes with interaction behavior are different from those with only one vehicle involved. It is challenging to develop a crash modeling scheme that can capture the interaction behavior. The last one is the nonlinear relationship issue. Most previous collision models are Generalized Linear Model-based (GLM-based) approaches. Such GLM-based approaches are constrained by their linear model specifications because, in most situations, the relationship between the crash rate and its contributing factors are not linear or may not even be monotonic. Thus, finding a way to model the collision data with nonlinear and non-monotonic relationships is of utmost importance. To address the issues of inconsistent observations, two techniques are developed. A fuzzy logic-based data mapping algorithm is proposed as the first technique to match data from two datasets so that duplicate crash records can be removed when combining these datasets. The membership functions of the fuzzy logic algorithm are established based on survey inputs collected from experts of the Washington State Department of Transportation (WSDOT). As verified by expert judgment collected through another survey, the accuracy of this algorithm was approximately 90%. Applying this algorithm to the two WSDOT datasets relevant to AVC, reported AVC data and the Carcass Removal (CR) data, the combined dataset has 15% -22% more records compared to the original CR dataset. The proposed algorithm is proven effective for merging the Reported AVC data and the CR data, with a combined dataset being more complete for wildlife safety studies and countermeasure evaluations. The second technique is a diagonal inflated bivariate Poisson regression (DIBP) method. It is an inflated version of bivariate Poisson regression model adopted to directly fit two datasets together. The proposed model technique was also applied to the reported AVC and CR data sets collected in Washington State between 2002 and 2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over- dispersed data sets. Compared with three other types of models; double Poisson, bivariate Poisson, and zero-inflated double Poisson; the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two datasets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers another new approach to investigating paired data sources from a different perspective. To address the issues with the interaction issue, a new occurrence mechanism-based probability model, an interaction-based model, which explicitly formulates the interactions between the objects, is introduced. The proposed method was applied to the AVC data and this method can explicitly formulate the interactions between animals and drivers to better capture the relationships among drivers' and animals' attributes, roadway and environmental factors, and AVCs. Findings of this study show that the proposed occurrence mechanism-based probability model better capture the impact of drivers' and animals' attributes on the AVC. This method can be further developed to model other types of collisions with interaction behavior. To address the nonlinear relationship issue, a Generalized Nonlinear Model (GNM)-based approach is put forward. The GNM-based approach is developed to utilize a nonlinear regression function to better elaborate non-monotonic relationships between the independent and dependent variables. Previous studies focused mainly on causal factor identification and crash risk modeling using Generalized Linear Models (GLMs), such as Poisson regression, and logistic regression among others. However, their basic assumption of a generalized linear relationship between the dependent variable (for example, crash rate) and independent variables (for example, contributing factors to crashes) established via a link function can often be violated in reality. Consequently, the GLM-based modeling results could provide biased findings and conclusions when the contributing factors have parabolic impact on the crashes. In this research, a GNM-based approach is applied with the rear end accident data and the AVC data collected from ten highway routes starting in 2002 and ending in 2006. For the rear-end collision application, the results show that truck percentage and grade have a parabolic impact: both items increase crash risks initially, but decrease risks after certain thresholds. Similarly, Annual Average Daily Traffic (AADT) and grade also have a parabolic impact on the AVC rate. Such non-monotonic relationships cannot be captured by regular GLM's, which further demonstrates the flexibility of GNM-based approaches in modeling the nonlinear relationship among data and providing more reasonable explanations. The superior GNM-based model interpretations better explain the parabolic impacts of some specific contributing factors and help in selecting and evaluating rear-end crash safety improvement plans. In Summary, these solutions proposed to address the three major issues in crash modeling are important for crash studies. The fuzzy-logic based data mapping algorithm can combine partial observations from different processes to form up a more complete dataset for a thorough analysis. The diagonal inflated bivariate Poisson models can directly take two data observation processes into account. The occurrence mechanism based probability models and GNM based models are effective methods for handling the interaction issue and non-linear relationships between dependent and independent variables.




Characteristics and Contributory Causes Related to Large Truck Crashes


Book Description

In order to improve safety of the overall surface transportation system, each of the critical areas needs to be addressed separately with more focused attention. Statistics clearly show that large-truck crashes contribute significantly to an increased percentage of high-severity crashes. It is therefore important for the highway safety community to identify characteristics and contributory causes related to large-truck crashes. During the first phase of this study, fatal crash data from the Fatality Analysis Reporting System (FARS) database were studied to achieve that objective. In this second phase, truck-crashes of all severity levels were analyzed with the intention of understanding characteristics and contributory causes, and identifying factors contributing to increased severity of truck-crashes, which could not be achieved by analyzing fatal crashes alone. Various statistical methodologies such as cross-classification analysis and severity models were developed using Kansas crash data. Various driver-, road-, environment- and vehicle- related characteristics were identified and contributory causes were analyzed. From the cross-classification analysis, severity of truck-crashes was found to be related with variables such as road surface (type, character and condition), accident class, collision type, driver- and environment-related contributory causes, traffic-control type, truck-maneuver, crash location, speed limit, light and weather conditions, time of day, functional class, lane class, and Average Annual Daily Traffic (AADT). Other variables such as age of truck driver, day of the week, gender of truck-driver, pedestrian- and truck-related contributory causes were found to have no relationship with crash severity of large trucks. Furthermore, driver-related contributory causes were found to be more common than any other type of contributory cause for the occurrence of truck-crashes. Failing to give time and attention, being too fast for existing conditions, and failing to yield right of way were the most dominant truck-driver-related contributory causes, among many others. Through the severity modeling, factors such as truck-driver-related contributory cause, accident class, manner of collision, truck-driver under the influence of alcohol, truck maneuver, traffic control device, surface condition, truck-driver being too fast for existing conditions, truck-driver being trapped, damage to the truck, light conditions, etc. were found to be significantly related with increased severity of truck-crashes. Truck-driver being trapped had the highest odds of contributing to a more severe crash with a value of 82.81 followed by the collision resulting in damage to the truck, which had 3.05 times higher odds of increasing the severity of truck-crashes. Truck-driver under the influence of alcohol had 2.66 times higher odds of contributing to a more severe crash. Besides traditional practices like providing adequate traffic signs, ensuring proper lane markings, provision of rumble strips and elevated medians, use of technology to develop and implement intelligent countermeasures were recommended. These include Automated Truck Rollover Warning System to mitigate truck-crashes involving rollovers, Lane Drift Warning Systems (LDWS) to prevent run-off-road collisions, Speed Limiters (SLs) to control the speed of the truck, connecting vehicle technologies like Vehicle-to-Vehicle (V2V) integration system to prevent head-on collisions etc., among many others. Proper development and implementation of these countermeasures in a cost effective manner will help mitigate the number and severity of truck-crashes, thereby improving the overall safety of the transportation system.




Crash Causal Factors and Countermeasures for High-risk Locations on Multilane Primary Highways in Virginia


Book Description

In 2004, a total of 95,020 vehicle crashes occurred on highways under the jurisdiction of the Virginia Department of Transportation (VDOT). Of these, 39,847 crashes occurred on primary highways, and 345 of these were fatal crashes. VDOT's traffic engineers continue to place increasing emphasis on identifying causal factors for crashes to enhance the selection of appropriate and effective countermeasures. The purpose of this study was to identify causal factors and appropriate countermeasures for crashes occurring at high-risk locations on multilane primary highways from 2001 through 2006. These high-risk locations were identified by Fontaine and Reed (2006) in a VDOT safety corridor study. A total of 365 sites, 1 to 2 mi in length, were used in the study. The statewide sites were located on rural and urban highways with divided, undivided, and traversable medians, with about 40 sites per VDOT district. Crash data were extracted from police crash reports, and geometric data were collected through site visits. Operational data were collected using VDOT's resources. The analysis involved more than 34,000 crashes and was conducted using fault tree analysis and generalized linear modeling. The fault tree analysis was used to determine the critical fault path based on the probability of an event occurring. Individual fault trees were constructed for each collision type and for each highway classification. The generalized linear models were developed for different highway classifications: urban divided, urban undivided, urban traversable (central lanes that can be used for left turns in both directions), and rural divided highways. Models were developed for rear-end crashes and total crashes, and separate models were developed for injury crashes, property damage only (PDO) crashes, and injury + PDO crashes. Appropriate potential countermeasures were then identified based on the significant causal factors identified in the models. The results indicated that rear-end crashes were the predominant type of crash, representing 56% of all PDO crashes on urban divided highways and 37% of all PDO crashes on rural divided highways. Implementing the recommended countermeasures for total, rear-end, and angle crashes for different assumed levels of rehabilitation is expected to result in a crash reduction of up to about 40% depending on the site and level of rehabilitation undertaken. A benefit/cost analysis showed that the benefit/cost ratios were higher than 1 for all levels of countermeasure implementation.




Statistical and Econometric Methods for Transportation Data Analysis


Book Description

The book's website (with databases and other support materials) can be accessed here. Praise for the Second Edition: The second edition introduces an especially broad set of statistical methods ... As a lecturer in both transportation and marketing research, I find this book an excellent textbook for advanced undergraduate, Master’s and Ph.D. students, covering topics from simple descriptive statistics to complex Bayesian models. ... It is one of the few books that cover an extensive set of statistical methods needed for data analysis in transportation. The book offers a wealth of examples from the transportation field. —The American Statistician Statistical and Econometric Methods for Transportation Data Analysis, Third Edition offers an expansion over the first and second editions in response to the recent methodological advancements in the fields of econometrics and statistics and to provide an increasing range of examples and corresponding data sets. It describes and illustrates some of the statistical and econometric tools commonly used in transportation data analysis. It provides a wide breadth of examples and case studies, covering applications in various aspects of transportation planning, engineering, safety, and economics. Ample analytical rigor is provided in each chapter so that fundamental concepts and principles are clear and numerous references are provided for those seeking additional technical details and applications. New to the Third Edition Updated references and improved examples throughout. New sections on random parameters linear regression and ordered probability models including the hierarchical ordered probit model. A new section on random parameters models with heterogeneity in the means and variances of parameter estimates. Multiple new sections on correlated random parameters and correlated grouped random parameters in probit, logit and hazard-based models. A new section discussing the practical aspects of random parameters model estimation. A new chapter on Latent Class Models. A new chapter on Bivariate and Multivariate Dependent Variable Models. Statistical and Econometric Methods for Transportation Data Analysis, Third Edition can serve as a textbook for advanced undergraduate, Masters, and Ph.D. students in transportation-related disciplines including engineering, economics, urban and regional planning, and sociology. The book also serves as a technical reference for researchers and practitioners wishing to examine and understand a broad range of statistical and econometric tools required to study transportation problems.