Book Description
The current data engineering demands more than theoretical understanding; it necessitates a practical, nuanced approach. Data engineering involves the intricate orchestration of systems and architectural frameworks for collecting, storing, processing, and analyzing vast datasets. The challenge lies in ensuring this data is managed and harnessed effectively, fostering insightful knowledge and steering organizations toward data-driven decision-making. Critical Approaches to Data Engineering Systems and Analysis unveils the latent potential inherent in diverse data analysis and engineering techniques. It combines compelling perspectives, guidelines, and frameworks, applying statistical and mathematical models. As industries and research communities witness increasing demand for web-based systems, software modules, heuristic models, and survey analysis, the book emphasizes the critical methodologies associated with data verification, reliability, fault tolerance, and viability.