Crushing Behaviour of Aluminum Foam-filled Composite Tubes


Book Description

An experimental study has been conducted in order to determine the effect of Al-foam filling on the composite and hybrid (Al metal and composite) composite tubes.Tubes and fillers used in the experiments were prepared using the tube rolling and foaming from powder compacts methods, respectively. The composite was prepared using E-glass fiber fabric (2x2 twill fiber construction of 165 g/m2 areal density) and polyester matrix with a 45/45 fiber angle to the tube axis. The quasi-static crush tests were conducted axially on the empty, hybrid and foam filled tubes at 25 mm/min crosshead speed. The deformation sequences of the tubes were further recorded during the tests in order to identify the crushing modes of the tubes. Two failure mechanisms literally known as progressive crushing and catastrophic failure (compression shear) were observed during the crushing of empty composite tubes. The progressive crushing mode leaded to higher crushing loads hence Specific Absorbed Energies (SAE). The predominant progressive crushing mode of empty tubes of thinner wall section was attributed to the surface end defects introduced during sectioning of the tubes. In hybrid tubes, the deformation mode of Al tube was found to be a more complex form of the diamond mode of deformation, leading to higher SAE values than the sum of the SAEs of empty composite and empty metal tube. The increased load and SAE values ofhybrid tubes were attributed to the constraining effect of the composite to the metal tube folding. Results further showed that when the progressive crushing mode was taken into account hybrid tubes had lower SAE values than those of empty composite tubes. The foam filling of the composite tubes however showed two different results. It increased the foam filled tube crush loads over the sum of the crush loads of empty composite tube and foam. In the latter case it was not effective in increasing crush loads over the sum of the crush loads of empty composite tube and foam in the progressive crushing region. These two effects were discussed in terms of possible interactions between composite tube and foam.




Energy Absorption of Structures and Materials


Book Description

This important study focuses on the way in which structures and materials can be best designed to absorb kinetic energy in a controllable and predictable manner. Understanding of energy absorption of structures and materials is important in calculating the damage to structures caused by accidental collision, assessing the residual strength of structures after initial damage and in designing packaging to protect its contents in the event of impact. Whilst a great deal of recent research has taken place into the energy absorption behaviour of structures and materials and significant progress has been made, this knowledge is diffuse and widely scattered. This book offers a synthesis of the most recent developments and forms a detailed and comprehensive view of the area. It is an essential reference for all engineers concerned with materials engineering in relation to the theory of plasticity, structural mechanics and impact dynamics. - Important new study of energy absorption of engineering structures and materials - Shows how they can be designed to withstand sudden loading in a safe, controllable and predictable way - Illuminating case studies back up the theoretical analysis




Development and Characterization of a Composite Cylindrical Column with an Aluminum Foam Core


Book Description

Energy absorption in automotive structures is very important when one considers the effect of collisions on safety. A literature review reveals a strong emphasis within the field of mechanical engineering on the design and development of energy-absorbing devices. With the increase in speeds and reduction in weight, there is an ever increasing need for better energy absorption within the structure. Energy absorption can be accomplished in a number of ways, one of which is the using structural elements that transform kinetic energy into plastic strain energy. The ideal structural energy absorber is one that dissipates a large amount of energy while transmitting the minimal force possible into the main structure. For practical reasons, the structures that have been considered are tubular ones and many have a core of lightweight material. Of all cross sectional shapes considered, the circular ones are the most ubiquitous owing to the ease of manufacturing, analysis and their added ability to absorb energy under axial loading. Aluminum foam is a cellular material with an open cell structure and aluminum ligaments. They are used heavily in shock absorption, particularly in cases of protecting occupants from explosions in the undercarriage of vehicles [1]. Aluminum foams-filled tubes have been discussed in the literature, especially in the context of high specific energy absorption which is a measure of absorbed energy per unit weight [2]. In addition, previous works[3--11] investigated the crashworthiness when aluminum foam-filled single tubes or thin-walled structures are used. The aim of this project is to conduct an experimental study into the crushing behavior and the energy absorption characteristics of aluminum and carbon fiber tubes with a Duocel® aluminum foam core. The core is coupled to the tube using epoxy injected into a section of a Duocel® aluminum foam. Chapter 2 describes the makeup and construction of this material. Chapter 3 describes the testing methodology. Chapter 4 presents results and discussions while Chapter 5 gives the conclusion and future work.




Hydraulic Equipment and Support Systems for Mining


Book Description

Volume is indexed by Thomson Reuters CPCI-S (WoS). The collection includes selected, peer-reviewed papers from the First International Workshop on Hydraulic Equipment and Support Systems for Mining (IWHEM2012), August 17-18, 2012, Huludao, China. The aim of IWHEM2012 is to present the latest research results from scientists related to hydraulic technology and mining equipment. The papers are grouped into: Chapter 1:Industrial Mechanical Engineering and Mining Machinery, Chapter 2: Hydraulic Equipment and Technology, Chapter 3: Materials Science.




Advances in Manufacturing Processes


Book Description

This book comprises selected proceedings of the International Conference on Engineering Materials, Metallurgy and Manufacturing (ICEMMM 2018). It discusses innovative manufacturing processes, such as rapid prototyping, nontraditional machining, advanced computer numerical control (CNC) machining, and advanced metal forming. The book particularly focuses on finite element simulation and optimization, which aid in reducing experimental costs and time. This book is a valuable resource for students, researchers, and professionals alike.




An Introduction to Composite Materials


Book Description

A fully expanded and updated edition covering the underlying science and technological usage of composite materials.







Quasi-static Axial Compression Behavior of Empty and Polystyrene Foam Filled Aluminum Tubes


Book Description

The strengthening effect of foam filling and the effect of foam filling on the crushing properties of the light weight foam filled circular tubes were investigated through the polystyrene foam filled thin-walled Al tubes of 16 and 25 mm in diameter. The empty tubes crushed progressively in asymmetric (diamond) mode. The foam filling however turned the deformation mode into progressive axisymmetric (concertina) mode in 25 mm Al tube, while the deformation mode in foam filled 16 mm Al tube remained to be the same with that of the empty tube. The strengthening coefficients of foam-filling defined as the ratio between the increase in the average crushing load of the filled tube with respect to empty tube and plateau load (load corresponding to the plateau stress of the foam) were found to be 1.8 and 3.2 for the concertina and diamond mode of deformation, respectively. The higher value of strengthening in diamond mode of deformation was attributed to the filler deformation beyond the densification region. This was also confirmed by the microscopic observation of the partially crushed sections of the filled tubes. The interaction effect between tube and filler was assessed by the compression testing of the partially foam filled tubes. The effects of filler density, deformation rate (in the range between 0.001-0.04 s-1) and the use of adhesive between the tube wall and filler on the average crushing load, stroke efficiency and specific absorbed energy of the tubes were determined. The specific absorbed energy of the filled tube was compared with that of the empty tubes of wall thickening on the equal mass basis. Finally, two modes of deformation modes were proposed for the crushing behavior of the foam filled thin-walled Al tubes.




Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity


Book Description

This volume highlights the latest advances, innovations, and applications in the field of metal forming, as presented by leading international researchers and engineers at the 14th International Conference on Technology of Plasticity (ICTP), held in Mandelieu-La Napoule, France on September 24-29, 2023. It covers a diverse range of topics such as manufacturing processes & equipment, materials behavior and characterization, microstructure design by forming, surfaces & interfaces, control & optimization, green / sustainable metal forming technologies, digitalization & AI in metal forming, multi-material processing, agile / flexible metal forming processes, forming of non-metallic materials, micro-forming and luxury applications. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.




Crashworthiness of Composite Thin-Walled Structures


Book Description

FROM THE INTRODUCTION Vehicle crashworthiness has been improving in recent years with attention mainly directed towards reducing the impact of the crash on the passengers. Effort has been spent in experimental research and in establishing safe theoretical design criteria on the mechanics of crumpling, providing to the engineers the ability to design vehicle structures so that the maximum amount of energy will dissipate while the material surrounding the passenger compartment is deformed, thus protecting the people inside. During the last decade the attention given to crashworthiness and crash energy management has been centered on composite structures. The main advantages of fibre reinforced composite materials over more conventional isotropic materials, are the very high specific strengths and specific stiffness which can be achieved. Moreover, with composites, the designer can vary the type of fibre, matrix and fibre orientation to produce composites with proved material properties. Besides the perspective of reduced weight, design flexibility and low fabrication costs, composite materials offer a considerable potential for lightweight energy absorbing structures; these facts attract the attention of the automotive and aircraft industry owing to the increased use of composite materials in various applications, such as frame rails used in the apron construction of a car body and the subfloor of an aircraft, replacing the conventional materials used. Our monograph is intended to provide an introduction to this relatively new topic of structural crashworthiness for professional engineers. It will introduce them to terms and concepts of it and acquaint them with some sources of literature about it. We believe that our survey constitutes a reasonably well-balanced synopsis of the topic.