Crystal Growth of Intermetallics


Book Description

Intermetallic compounds are in the focus of solid-state research for a wide range of future applications, e.g. in heterogeneous catalysis, for thermoelectric generators, and basic research of quantum critical effects. A comprehensive overview is given on various crystal growth techniques that are particularly adopted to intermetallic phases. Experienced authors from leading institutes give detailed descriptions of the specific problems in crystal growth of intermetallic compounds and approaches to solve them.




Properties And Applications Of Complex Intermetallics


Book Description

Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc.This book is the second of a series of books issued yearly as a deliverable to the European Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.




Intermetallics


Book Description

The fascinating world of intermetallics is largely unexplored. There are many exciting physical properties and important technological applications of intermetallics, from magnetism to superconductivity. The main focus of this book is on the statistics, topology and geometry of crystal structures and structure types of intermetallic phases. The underlying physics, in particular chemical bonding, is discussed whenever it helps understand the stability of structures and the origin of their physical properties. The authors' approach, based on the statistical analysis of more than twenty thousand intermetallic compounds in the data base Pearson's Crystal Data, uncovers important structural relationships and illustrates the relative simplicity of most of the general structural building principles. It also shows that a large variety of actual structures can be related to a rather small number of aristotypes. The text aims to be readable and beneficial in one way or another to everyone interested in intermetallic phases, from graduate students to experts in solid state chemistry and physics, and materials science. For that purpose it avoids the use of enigmatic abstract terminology for the classification of structures. Instead, it focuses on the statistical analysis of crystal structures and structure types in order to draw together a larger overview of intermetallics, and indicate the gaps in it - areas still to be explored, and potential sources of worthwhile research. The text should be read as a reference guide to the incredibly rich world of intermetallic phases.




Handbook of Crystal Growth


Book Description

Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy.Volume 2A - Presents the status and future of Czochralski and float zone growth of dislocation-free silicon - Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades - Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics - Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B - Explores capillarity control of the crystal shape at the growth from the melt - Highlights modeling of heat and mass transport dynamics - Discusses control of convective melt processes by magnetic fields and vibration measures - Includes imperative information on the segregation phenomenon and validation of compositional homogeneity - Examines crystal defect generation mechanisms and their controllability - Illustrates proper automation modes for ensuring constant crystal growth process - Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries







Rare-Earth Borides


Book Description

Rare-earth borides have attracted continuous interest for more than half a century both from the point of view of fundamental condensed matter physics and for practical applications in various fields of engineering. They demonstrate a wealth of unusual electronic and magnetic properties that have been closely investigated in recent decades using advanced spectroscopies and state-of-the-art physical characterization methods. Authored by leading experts in the field, this book features a comprehensive collection of reviews offering a cutting-edge summary of the research on rare-earth borides from various viewpoints. It includes chapters on the growth and characterization of single-crystal and thin-film samples, detailed description of their lattice structure and dynamics, electronic and magnetic properties in the bulk and at the surface, low-temperature ordering phenomena, and theoretical and experimental description of the unusual spectroscopic properties from the perspective of modern x-ray and neutron scattering, Raman spectroscopy, and electron spin resonance. The book will appeal to anyone interested in the physics and chemistry of solids and low-temperature physics, especially to researchers and postgraduate students who study magnetic and electronic properties of rare-earth compounds.




Intermetallics


Book Description

The expanded edition focuses still more on Synthesis discussing necessary requirements for sample preparation and presents the broad range from structural analysis to property investigations. Additional examples of chemical and physical properties are highlighted for metallic, binary and multinary intermetallic compounds. The work contains an up-dated literature overview in all sub-chapters and a detailed formulae index.




Crystal Growth Processes Based on Capillarity


Book Description

Crystal Growth Processes Based on Capillarity closely examines crystal growth technologies, like Czochralski, Floating zone, and Bridgman. The up-to-date reference contains detailed technical and applied information, especially on the difficulty of crystal shape control. Including practical examples and software applications, this book provides both theoretical and experimental sections. Edited by a well-respected academic with over twenty-five years of experience in this field, the text is an excellent resource for professionals in crystal growth as well as for students in understanding the fundamentals and the technology of crystal growth.




Intermetallic Compounds


Book Description

An intermetallic compound is one consisting of two or more metallic elements present in definite proportions in alloy. They are used in a wide range of industries such as semiconductors and the aerospace industry. Thousands of tons of the nickel aluminum alloy are used worldwide every year.




Unconventional Liquid Crystals and Their Applications


Book Description

The work focuses on recent developments of the rapidly evolving field of Non-conventional Liquid Crystals. After a concise introduction it discusses the most promising research such as biosensing, elastomers, polymer films , photoresponsive properties and energy harvesting. Besides future applications it discusses as well potential frontiers in LC science and technology.