Crystalline Electric Field Effects in f-Electron Magnetism


Book Description

The present conference, the fourth successive on this subject, was organized to commemorate the 75th birthday of Professor Wtodzimierz Trzebiatowski, one of the pioneers in the field of f-electron materials structure, particularly in the magnetism of actinides. This volume contains 64 papers presented at the conference held in Wroctaw, Poland, September 22-25, 1981. Twenty-one were invited talks. About 100 participants from 13 countries attended the meeting during four days of lecture presentation (note these two numbers have been constant for the last two conferences). The conference consisted of sessions devoted to the investigation of crystalline electric fields and structural effects by spectroscopic techniques, neutron diffraction, magnetic, thermodynamic and electrical measurements all over broad temperature, magnetic field and pressure ranges. Materials investigated included rare earth intermetallics, hydrides, diluted systems and actinides, and among them some exhibited singlet ground state behavior. The experimental results were supplemented by theory. It is our pleasure to mention those persons who helped us make the conference successful. The International Advisory Com mittee included W.J.L. Buyers, B.R. Cooper, J.E. Crow, P. Fulde, A. Furrer, T. Kasuya, L. Kowalewski, G.R. Lander, R. Lemaire and D. Wohlleben. We thank them for valuable suggestions concerning invited speakers. We also wish to thank the co-workers of the In stitute for Low Temperature and Structure Research of the Polish Academy of Sciences in Wroclaw, especially A. Baran, M. Grzebyk, K.







Crystalline Electric Field and Structural Effects in f-Electron Systems


Book Description

Perhaps the title of this conference "Ctystalline Electric Field and Structural Effects in f-Electron Systems" reflects best the growth and direction of the field. The title and the conference itself go beyond "CEF" in two broad and important respects. First, the inter-relations between CEF and mode softenings, distortions due to quadruplar ordering or the Jahn Teller effect, have gained greater focus, hence the inclusion of . •• "Structral Effects. " Second, much greater emphasis on the actinides and, in particular, comparisons between actinides and the lighter rare earths is seen in this conference, hence the more general terminology . . . Iff-Electron Systems. " It seems clear that this comparison will lead to an extension to the actinides of mixed valence and Kondo considerations, as well as CEF effects. The emergence of a broader discipline which includes all f-electron systems and which is concerned with unstable, as well as stable, valence reflects the maturation of the field and a coming to grips with the complexity, as well as the unity, of f-electron systems. This maturation is also seen in the growing realization of the effects of CEF on transport, thermodynamic properties, and superconductivity and its co-existence with magnetic order. This volume contains 63 articles, all but two of which were presented at the Conference held in Philadelphia, U. S. A. , on 12-15 November, 1979. About 100 conferees from 13 countries attended the meeting which consisted of four full days of lecture presentations.




Spin Waves and Magnetic Excitations


Book Description

Modern Problems in Condensed Matter Sciences, Volume 22.1: Spin Waves and Magnetic Excitations, Part I focuses on the principles, methodologies, approaches, and reactions involved in spin waves and magnetic excitations, including, Brillouin-Mandelstam light scattering, optical magnetic excitations, and magnetic dielectrics. The selection first elaborates on spin waves in magnetic dielectrics current status of the theory and light scattering from spin waves. Discussions focus on magneto-optic effects and the mechanism of light scattering in magnets, Brillouin-Mandelstam light scattering, Raman scattering, Collinear Heisenberg ferromagnet, low-temperature phase transitions, and low-dimensional systems. The text then ponders on optical magnetic excitations, spin waves above the threshold of parametric excitations, and theory of spin excitations in rare earth systems. Topics include Hamiltonian for rare earth systems, parametric instability of spin waves in magnetic dielectrics, nonstationary processes in parametric excitation of spin waves, radiative decay of magnetic excitons, and mechanism of the generation of magnetic excitations by light. The book tackles 4f moments and their interaction with conduction electrons and neutron scattering studies of magnetic excitations in itinerant magnets, including magnetic excitations at finite and low temperatures, paramagnetic scattering, coupling to conduction electrons, and virtual magnetic excitations. The selection is highly recommended for researchers wanting to study spin waves and magnetic excitations.




High Field Magnetism


Book Description

High Field Magnetism covers the proceedings of the 2nd International Symposium on High Field Magnetism held in Leuven, Belgium on July 20-23, 1988. The book focuses on magnetism, superconductivity, superconductors, and magnetic properties. The selection first offers information on DC laboratory electromagnets and design of magnet coils for semi-continuous magnetic fields. Discussions focus on resistive and hybrid magnets, power, stress, and homogeneity of the field. The book then examines production of ultra-high magnetic fields and their application to solid state physics; laboratory facility for the magnetic flux compression systems using large explosives; and production of repeating pulsed high magnetic field. The book takes a look at an electronic monitoring system for hybrid magnets; non-destructive quasi-static pulsed magnetic fields at Toulouse; and high field laboratory for superconducting materials at the Institute for Materials Research at Tohoku University. The manuscript then ponders on high magnetic field facility at Osaka University; advances in high field magnetism at Osaka; and status and prospects of superconducting Chevrel phase wires for high magnetic field applications. The selection is a dependable reference for readers interested in high field magnetism.




Properties And Applications Of Complex Intermetallics


Book Description

Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc.This book is the second of a series of books issued yearly as a deliverable to the European Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.




Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics


Book Description

Rare-earth intermetallics, also known as lanthanide elements, play an important role in the study of magnetic materials and the development of semi- and super-conducting materials. This handbook provides an up-to-date compilation of crystallographic, physical, and magnetic data on rare-earth intermetallic compounds. Over 20 different structure types are described in detail with an emphasis on how crystal structure can affect magnetic properties. Theoretical models for magnetic interactions are described as well as the impact of crystal electric fields on transport properties, magneto crystalline anistropy and hyperfine interactions. This book provides materials scientists, engineers and physicists with all the critical information needed to use rare-earth intermetallics effectively in the development of new materials.




Supermagnets, Hard Magnetic Materials


Book Description

The book you are now holding represents the final step in a long process for the editors and organizers of the Advanced Study Institute on hard magnetic materials. The editors interest in hard magnetic materials began in 1985 with an attempt to better understand the moments associated with the different iron sites in Nd Fe B. These 14 moments can be obtained from neutron diffraction studies, but we qUickly realized that iron-57 Mossbauer spectroscopy should lead to a better determination of these moments. However, it was also realized that the complex Mossbauer spectra obtained for these hard magnetic materials could not be easily understood without a broad knowledge of their various structural, electronic, and magnetic properties. Hence it seemed useful to the editors to bring together scientists and engineers to discuss, in a tutorial setting, the various properties of these and future hard magnetic materials. We believe the inclusion of engineers as well as scientists in these discussions was essential because the design of new magnetic materials depends very much upon the mode in which they are used in practical devices.




Handbook on the Physics and Chemistry of Rare Earths


Book Description

This volume of the handbook covers a variety of topics with three chapters dealing with a range of lanthanide magnetic materials, and three individual chapters concerning equiatomic ternary ytterbium intermetallic compounds, rare-earth polysulfides, and lanthanide organic complexes. Two the chapters also include information of the actinides and the comparative lanthanide/actinide behaviors.




Physics briefs


Book Description