Current Developments in Solid State NMR Spectroscopy


Book Description

Why to apply solid-state NMR? - By now, we should have learned that NMR is mainly used for the study of molecules in solution, while x-ray diffraction is the method of choice for solids. Based on this fact, the two recent 'NMR-Nobelprizes' went indeed into the liquid phase: my own one eleven years ago, and particularly the most recent one to Kurt Wuthrich. His prize is beyond any doubts very well justified. His contribution towards the study of biomolecules in solution, in their native (or almost native) environment is truly monumental. We all will profit from it indirectly when one of our future diseases will be cured with better drugs, based on the insightful knowledge gained through liquid-state NMR. Two fields of NMR are still left out of the Nobel Prize game: magnetic reso nance imaging (MRI) and solid-state NMR. The disrespect for MRI in Stockholm is particularly difficult to understand; but this is not a subject to be discussed at the present place. Solid-state NMR is the third of the three great fields of NMR, powerful already today and very promising for the near future.




Modern Methods in Solid-state NMR


Book Description

Solid-state NMR covers an enormous range of material types and experimental techniques. Although the basic instrumentation and techniques of solids NMR are readily accessible, there can be significant barriers, even for existing experts, to exploring the bewildering array of more sophisticated techniques. In this unique volume, a range of experts in different areas of modern solid-state NMR explain about their area of expertise, emphasising the “practical aspects” of implementing different techniques, and illustrating what questions can and cannot be addressed. Later chapters address complex materials, showing how different NMR techniques discussed in earlier chapters can be brought together to characterise important materials types. The volume as a whole focusses on topics relevant to the developing field of “NMR crystallography” – the use of solids NMR as a complement to diffraction crystallography. This book is an ideal complement to existing introductory texts and reviews on solid-state NMR. New researchers wanting to understand new areas of solid-state NMR will find each chapter to be the equivalent to spending time in the laboratory of an internationally leading expert, learning the hints and tips that make the difference between knowing about a technique and being ready to put it into action. With no equivalent on the market, it will be of interest to every solid-state NMR researcher (academic and postgraduate) working in the chemical sciences.




Solid-state NMR


Book Description

The purpose of this book is to describe the methodology and applications of solid-state NMR spectroscopy to studies of membrane proteins, membrane-active peptides and model biological membranes. As well as structural studies, this book contains coverage of membrane interactions and molecular motions. Advances in biological solid-state NMR are very pertinent with high-field developments seeing applications in biological membranes and whole cells. Experts who are leaders in the development and application of biological solid-state NMR are chapter contributors. Part of Biophysical Society-IOP series.




Solid State NMR


Book Description

Solid State NMR A thorough and comprehensive textbook covering the theoretical background, experimental approaches, and major applications of solid-state NMR spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful non-destructive technique capable of providing information about the molecular structure and dynamics of molecules. Alongside solution-state NMR, a well-established technique to study chemical structures and investigate physico-chemical properties of molecules in solutions, solid-state NMR (SSNMR) offers many exciting possibilities for the analysis of solid and soft materials across scientific fields. SSNMR shows unique capabilities for a detailed investigation of structural and dynamic properties of materials over wide space and time ranges. For this reason, and thanks to significant advances in the past several years, the application of SSNMR to materials is rapidly increasing in disciplines such as chemistry, physics, and materials and life sciences. Solid State NMR: Principles, Methods, and Applications offers a systematic introduction to the theory, methodological concepts, and major experimental methods of SSMR spectroscopy. Exploring the unique potential of SSNMR for the structural and dynamic characterization of soft and either amorphous or crystalline solid materials, this comprehensive textbook provides foundational knowledge and recent developments of SSNMR, covering physical and theoretical background, experimental methods, and applications to pharmaceuticals, polymers, inorganic and hybrid materials, liquid crystals, and model membranes. Written by two expert authors to ensure a clear and consistent presentation of the subject, this textbook: Includes a brief introduction to the historical aspects and broad theoretical background of solid-state NMR spectroscopy Provides helpful illustrations to explain the various SSNMR concepts and methods Features accessible descriptive text with self-consistent use of quantum mechanics Covers the experimental aspects of SSNMR spectroscopy and in particular a description of many useful pulse sequences Contains references to relevant literature Solid State NMR: Principles, Methods, and Applications is the ideal textbook for university courses on SSNMR, advanced spectroscopies, and a valuable single-volume reference for spectroscopists, chemists, and researchers in the field of materials.




Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials


Book Description

Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.




Solid State NMR of Polymers


Book Description

In polymer science and technology, the advanced development of various new polymer materials with excellent properties and functions is desirable. For this purpose it is necesary to determine the exact relationship between physical properties and molecular structure-dynamics with powerful techniques. One such technique is solid state NMR. Recently, high resolution NMR studies of solids have been realized by using advanced pulse and mechanical techniques, which has resulted in a variety of structural and dynamical information on polymer systems. Solid state NMR has provided characteristic information which cannot be obtained by other spectroscopic methods.This book is divided into two parts. The first part covers the principles of NMR, important NMR parameters such as chemical shifts, relaxation times, dipolar interactions, quadrupolar interactions, pulse techniques and new NMR methods. In the second part, applications of NMR to a variety of polymer systems in the solid state are described.Features of this book:• Contains an up-to-date and comprehensive account of solid state NMR of polymers by leading researchers in the field• Provides a compilation of solid state NMR of polymers, which makes it an ideal reference book for both NMR researchers and general polymer scientists.This book will be of interest to the NMR community, and will be invaluable for both the beginner and the expert.




Spectroscopic Analyses


Book Description

The book presents developments and applications of these methods, such as NMR, mass, and others, including their applications in pharmaceutical and biomedical analyses. The book is divided into two sections. The first section covers spectroscopic methods, their applications, and their significance as characterization tools; the second section is dedicated to the applications of spectrophotometric methods in pharmaceutical and biomedical analyses. This book would be useful for students, scholars, and scientists engaged in synthesis, analyses, and applications of materials/polymers.




Advances in Biological Solid-State NMR


Book Description

Advances in Biological NMR brings the reader up to date with chapters from international leaders of this growing field, covering the most recent developments in the methodology and applications of solid state NMR to studies of membrane interactions and molecular motions




Multidimensional Solid-State NMR and Polymers


Book Description

NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. - Presents original theories and new perspectives on scattering techniques - Provides a systematic treatment of the whole subject - Gives readers access to previously unpublished material - Includes extensive illustrations




Solid State NMR Spectroscopy for Biopolymers


Book Description

‘‘Biopolymers’’ are polymeric materials of biological origin, including globular, membrane, and fibrous proteins, polypeptides, nucleic acids, po- saccharides, lipids, etc. and their assembly, although preference to respe- ive subjects may be different among readers who are more interested in their biological significance or industrial and/or medical applications. Nevert- less, characterizing or revealing their secondary structure and dynamics may be an equally very important and useful issue for both kinds of readers. Special interest in revealing the 3D structure of globular proteins, nucleic acids, and peptides was aroused in relation to the currently active Structural Biology. X-ray crystallography and multidimensional solution NMR sp- troscopy have proved to be the standard and indispensable means for this purpose. There remain, however, several limitations to this end, if one intends to expand its scope further. This is because these approaches are not always straightforward to characterize fibrous or membrane proteins owing to extreme difficulty in crystallization in the former, and insufficient spectral resolution due to sparing solubility or increased effective molecular mass in the presence of surrounding lipid bilayers in the latter.