Current Trends in Microbial Biotechnology for Sustainable Agriculture


Book Description

Microbial biotechnology is an emerging field with applications in a broad range of sectors involving food security, human nutrition, plant protection and overall basic research in the agricultural sciences. The environment has been sustaining the burden of mankind from time immemorial, and our indiscriminate use of its resources has led to the degradation of the climate, loss of soil fertility, and the need for sustainable strategies. The major focus in the coming decades will be on achieving a green and clean environment by utilizing soil and plant-associated beneficial microbial communities. Plant-microbe interactions include the association of microbes with plant systems: epiphytic, endophytic and rhizospheric. The microbes associated with plant ecosystems play an important role in plant growth, development, and soil health. Moreover, soil and plant microbiomes help to promote plant growth, either directly or indirectly by means of plant growth-promoting mechanisms, e.g. the release of plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation; or by producing siderophores, ammonia, HCN and other secondary metabolites. These beneficial microbial communities represent a novel and promising solution for agro-environmental sustainability by providing biofertilizers, bioprotectants, and biostimulants, in addition to mitigating various types of abiotic stress in plants. This book focuses on plant-microbe interactions; the biodiversity of soil and plant microbiomes; and their role in plant growth and soil health. Accordingly, it will be immensely useful to readers working in the biological sciences, especially microbiologists, biochemists and microbial biotechnologists.




Recent Advancement in Microbial Biotechnology


Book Description

The rapid increase in microbial resources along with the development of biotechnological methods has revolutionized the field of microbial biotechnology. Genome characterization methods and metagenomic approaches further illustrate the role of microorganisms in various fields of research. Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach provides an overview on the recent application of the microorganisms in agricultural and industrial improvements. The purpose of this book is to integrate all these diverse areas of research in a common platform. Recent advancement in Microbial Biotechnology targets researchers from both academia and industry, professors and graduate students working in molecular biology, microbiology and biotechnology. - Gives insight in the exploration of microbial functional diversity in different systems - Highlights important microbes and their role in enhancing agricultural productivity - Provides understanding to the basics with advance information of microbial biotechnology - Explores the importance of microbial genomes studies in agricultural and industrial applications




New and Future Developments in Microbial Biotechnology and Bioengineering


Book Description

New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives describes how specific techniques can be used to generalize the metabolism of bacteria that optimize biologic improvement strategies and bio-transport processes. Microbial biotechnology focuses on microbes of agricultural, environmental, industrial, and clinical significance. This volume discusses several methods based on molecular genetics, systems, and biology of synthetic, genomic, proteomic, and metagenomics. Recent developments in our understanding of the role of microbes in sustainable agriculture and biotechnology have created a highly potential research area. The soil and plant microbiomes have a significant role in plant growth promotion, crop yield, soil health and fertility for sustainable developments. The microbes provide nutrients and stimulate plant growth through different mechanisms, including solubilization of phosphorus, potassium, and zinc; biological nitrogen fixation; production of siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. This new book provides an indispensable reference source for engineers/bioengineers, biochemists, biotechnologists, microbiologists, agrochemists, and researchers who want to know about the unique properties of this microbe and explore its sustainable agriculture future applications. - Introduces the principles of microbial biotechnology and its application in plant growth and soil health for sustainable agriculture - Explores various plant microbiomes and their beneficial impact on plant growth for crop improvement - Explains the mechanisms of plant-microbe interaction and plant growth promotion - Includes current applications of microbial consortium for enhance production of crop in eco-friendly manners




Biotechnology for Sustainable Agriculture


Book Description

Biotechnology for Sustainable Agriculture: Emerging Approaches and Strategies is an outstanding collection of current research that integrates basic and advanced concepts of agricultural biotechnology with future development prospects. Using biotechnology with sustainable agriculture effectively contributes to gains in agricultural productivity, enhanced food security, reduced poverty and malnutrition, and more ecologically sustainable means of food production. Written by a panel of experts, this book is unique in its coverage of the broad area of biotechnology for sustainable agriculture. It includes intriguing topics and discussions of areas such as recombinant DNA technology and genetic engineering. - Identifies and explores biotechnological tools to enhance sustainability - Encompasses plant and microbial biotechnology, nanotechnology and genetic engineering - Focuses on plant biotechnology and crop improvement to increase yield and resilience - Summarizes the impact of climate change on agriculture, fisheries and livestock




The Plant Microbiome in Sustainable Agriculture


Book Description

The most up-to-date reference on phytomicrobiomes available today The Plant Microbiome in Sustainable Agriculture combines the most relevant and timely information available today in the fields of nutrient and food security. With a particular emphasis on current research progress and perspectives of future development in the area, The Plant Microbiome in Sustainable Agriculture is an invaluable reference for students and researchers in the field, as well as those with an interest in microbiome research and development. The book covers both terrestrial and crop associated microbiomes, unveiling the biological, biotechnological and technical aspects of research. Topics discussed include: Developing model plant microbiome systems for various agriculturally important crops Defining core microbiomes and metagenomes in these model systems Defining synthetic microbiomes for a sustainable increase in food production and quality The Plant Microbiome in Sustainable Agriculture is written to allow a relative neophyte to learn and understand the basic concepts involved in phytomicrobiomes and discuss them intelligently with colleagues.




Plant-Microbial Interactions and Smart Agricultural Biotechnology


Book Description

Considering the ever-increasing global population and finite arable land, technology and sustainable agricultural practices are required to improve crop yield. This book examines the interaction between plants and microbes and considers the use of advanced techniques such as genetic engineering, revolutionary gene editing technologies, and their applications to understand how plants and microbes help or harm each other at the molecular level. Understanding plant-microbe interactions and related gene editing technologies will provide new possibilities for sustainable agriculture. The book will be extremely useful for researchers working in the fields of plant science, molecular plant biology, plant-microbe interactions, plant engineering technology, agricultural microbiology, and related fields. It will be useful for upper-level students and instructors specifically in the field of biotechnology, microbiology, biochemistry, and agricultural science. Features: Examines the most advanced approaches for genetic engineering of agriculture (CRISPR, TALAN, ZFN, etc.). Discusses the microbiological control of various plant diseases. Explores future perspectives for research in microbiological plant science. Plant-Microbial Interactions and Smart Agricultural Biotechnology will serve as a useful source of cutting-edge information for researchers and innovative professionals, as well as upper-level undergraduate and graduate students taking related agriculture and environmental science courses.




New and Future Developments in Microbial Biotechnology and Bioengineering


Book Description

New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health discusses how microbial biotechnology helps us understand new strategies to reduce pathogens and drug resistance through microbial biotechnology. The most commonly used probiotic bacteria are Lactobacillus and Bifidobacterium. Therefore, the probiotic strains exhibit powerful anti-inflammatory, antiallergic and other important properties. This new book provides an indispensable reference source for engineers/bioengineers, biochemists, biotechnologists, microbiologists, pharmacologists, and researchers who want to know about the unique properties of this microbe and explore its sustainable biomedicine future applications. - Introduces the principles of microbial biotechnology and its application for sustainable biomedicine system - Explores various microbes and their beneficial application for biofortification of crops for micronutrients - Explains the potentials and significance of probiotics, prebiotics and synbiotics in health and disease - Includes current applications of beneficial microbes as Functional Food Products of Pharmaceutical Importance




New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms


Book Description

New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms is divided into three sections: microbial adhesion/biofilms in medical settings, microbial adhesion/biofilms in agriculture, and microbial adhesion/biofilm in the environment and industry. Chapters cover adhesion and biofilm formation by pathogenic microbes on tissue and on indwelling medical devices, including sections on human infections, microbial communication during biofilm mode of growth, host defense and antimicrobial resistance, and more. Other sections cover the biofilms of agriculturally important and environmental friendly microbes, including biofilm formation on plants, in soil, and in aquatic environments. Finally, the latest scientific research on microbial adhesion and biofilm formation in the environment and in industry is covered. - Provides an overview on the growth, structure, cell-to-cell interactions, and control/dispersal of bacterial and fungal of in vitro and in vivo biofilms - Presents an overview on the microbial adhesion, biofilm formation and structures of single-species and multi-species biofilms on human tissues/medical devices, agriculture, environment and chemical industries - Includes chapters on microbial biofilms of pathogenic microbes on human tissues and in medical indwelling devices - Covers factors affecting microbial biofilm, adhesion and formation




Biofertilizers for Sustainable Agriculture and Environment


Book Description

This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, might offer an alternative. They are natural, organic, biodegradable, eco-friendly and cost-effective. Further, the microbes present in the biofertilizers are important, because they produce nutrients required for plant growth (e.g., nitrogen, phosphorus, potassium), as well as substances essential for plant growth and development (e.g., auxins and cytokinins). Biofertilizers also improve the physical properties, fertility and productivity of soil, reducing the need for chemical fertilizers while maintaining high crop yield. This makes biofertilizers a powerful tool for sustainable agriculture and a sustainable environment. The book covers the latest research on biofertilizers, ranging from beneficial fungal, bacterial and algal inoculants; to microbes for bioremediation, wastewater treatment; and recycling of biodegradable municipal, agricultural and industrial waste; as well as biocontrol agents and bio-pesticides. As such, it offers a valuable resource for researchers, academics and students in the broad fields of microbiology and agriculture.




Microbes and Microbial Technology


Book Description

This book focuses on successful application of microbial biotechnology in areas such as medicine, agriculture, environment and human health.