Cutting Data for Turning of Steel


Book Description

"This book is an essential reference for achieving maximum productivity from machine tools when tuning the most commonly used grades of carbon, alloy, stainless, and tool steels. More specifically, its purpose is to provide recommendations for selecting machining parameters in relationship with cutting tool materials and workplace materials. Manufacturing engineers and managers, machine shop supervisors, machine tool operators, CNC programmers, and cutting tool engineers and designers will all find this book an invaluable aid as they search for ways to improve the efficiency of their operations."--BOOK JACKET.







Machining of Hard Materials


Book Description

Hard machining is a relatively recent technology that can be defined as a machining operation, using tools with geometrically defined cutting edges, of a work piece that has hardness values typically in the 45-70HRc range. This operation always presents the challenge of selecting a cutting tool insert that facilitates high-precision machining of the component, but it presents several advantages when compared with the traditional methodology based in finish grinding operations after heat treatment of work pieces. Machining of Hard Materials aims to provide the reader with the fundamentals and recent advances in the field of hard machining of materials. All the chapters are written by international experts in this important field of research. They cover topics such as: • advanced cutting tools for the machining of hard materials; • the mechanics of cutting and chip formation; • surface integrity; • modelling and simulation; and • computational methods and optimization. Machining of Hard Materials can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals in machining and related industries. It can also be used as a text for advanced undergraduate or postgraduate students studying mechanical engineering, manufacturing, or materials.




Proceedings of International Conference on Intelligent Manufacturing and Automation


Book Description

This book presents the outcomes of the International Conference on Intelligent Manufacturing and Automation (ICIMA 2018) organized by the Departments of Mechanical Engineering and Production Engineering at Dwarkadas J. Sanghvi College of Engineering, Mumbai, and the Indian Society of Manufacturing Engineers. It includes original research and the latest advances in the field, focusing on automation, mechatronics and robotics; CAD/CAM/CAE/CIM/FMS in manufacturing; product design and development; DFM/DFA/FMEA; MEMS and Nanotechnology; rapid prototyping; computational techniques; industrial engineering; manufacturing process management; modelling and optimization techniques; CRM, MRP and ERP; green, lean, agile and sustainable manufacturing; logistics and supply chain management; quality assurance and environment protection; advanced material processing and characterization; and composite and smart materials.




Modern Machining Technology


Book Description

This forward-thinking, practical book provides essential information on modern machining technology for industry with emphasis on the processes used regularly across several major industries. Machining technology presents great interest for many important industries including automotive, aeronautics, aerospace, renewable energy, moulds and dies, biomedical, and many others. Machining processes are manufacturing processes in which parts are shaped by the removal of unwanted material; these processes cover several stages and are usually divided into the following categories: cutting (involving single point or multipoint cutting tools); abrasive processes (including grinding and advanced machining processes, such as EDM (electrical discharge machining), LBM (laser-beam machining), AWJM (abrasive water jet machining) and USM (ultrasonic machining). - Provides essential information on modern machining technology, with emphasis on the processes used regularly across several major industries - Covers several processes and outlines their many stages - Contributions come from a series of international, highly knowledgeable and well-respected experts




Surface Integrity in Machining


Book Description

"Surface Integrity in Machining" describes the fundamentals and recent advances in the study of surface integrity in machining processes. "Surface Integrity in Machining" gathers together research from international experts in the field. Topics covered include: the definition of surface integrity and its importance in functional performance; surface topography characterization and evaluation; microstructure modification and the mechanical properties of subsurface layers; residual stresses; surface integrity characterization methods; and surface integrity aspects in machining processes. A useful reference for researchers in tribology and materials, mechanical and materials engineers, and machining professionals, "Surface Integrity in Machining" can be also used as a textbook by advanced undergraduate and postgraduate students.




Cutting Tool Applications


Book Description




American Machinist


Book Description




Advanced Machining Processes of Metallic Materials


Book Description

Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications, Second Edition, explores the metal cutting processes with regard to theory and industrial practice. Structured into three parts, the first section provides information on the fundamentals of machining, while the second and third parts include an overview of the effects of the theoretical and experimental considerations in high-level machining technology and a summary of production outputs related to part quality. In particular, topics discussed include: modern tool materials, mechanical, thermal and tribological aspects of machining, computer simulation of various process phenomena, chip control, monitoring of the cutting state, progressive and hybrid machining operations, as well as practical ways for improving machinability and generation and modeling of surface integrity. This new edition addresses the present state and future development of machining technologies, and includes expanded coverage on machining operations, such as turning, milling, drilling, and broaching, as well as a new chapter on sustainable machining processes. In addition, the book provides a comprehensive description of metal cutting theory and experimental and modeling techniques, along with basic machining processes and their effective use in a wide range of manufacturing applications. The research covered here has contributed to a more generalized vision of machining technology, including not only traditional manufacturing tasks, but also potential (emerging) new applications, such as micro and nanotechnology. - Includes new case studies illuminate experimental methods and outputs from different sectors of the manufacturing industry - Presents metal cutting processes that would be applicable for various technical, engineering, and scientific levels - Includes an updated knowledge of standards, cutting tool materials and tools, new machining technologies, relevant machinability records, optimization techniques, and surface integrity




Metal Cutting Theory and Practice


Book Description

A Complete Reference Covering the Latest Technology in Metal Cutting Tools, Processes, and Equipment Metal Cutting Theory and Practice, Third Edition shapes the future of material removal in new and lasting ways. Centered on metallic work materials and traditional chip-forming cutting methods, the book provides a physical understanding of conventional and high-speed machining processes applied to metallic work pieces, and serves as a basis for effective process design and troubleshooting. This latest edition of a well-known reference highlights recent developments, covers the latest research results, and reflects current areas of emphasis in industrial practice. Based on the authors’ extensive automotive production experience, it covers several structural changes, and includes an extensive review of computer aided engineering (CAE) methods for process analysis and design. Providing updated material throughout, it offers insight and understanding to engineers looking to design, operate, troubleshoot, and improve high quality, cost effective metal cutting operations. The book contains extensive up-to-date references to both scientific and trade literature, and provides a description of error mapping and compensation strategies for CNC machines based on recently issued international standards, and includes chapters on cutting fluids and gear machining. The authors also offer updated information on tooling grades and practices for machining compacted graphite iron, nickel alloys, and other hard-to-machine materials, as well as a full description of minimum quantity lubrication systems, tooling, and processing practices. In addition, updated topics include machine tool types and structures, cutting tool materials and coatings, cutting mechanics and temperatures, process simulation and analysis, and tool wear from both chemical and mechanical viewpoints. Comprised of 17 chapters, this detailed study: Describes the common machining operations used to produce specific shapes or surface characteristics Contains conventional and advanced cutting tool technologies Explains the properties and characteristics of tools which influence tool design or selection Clarifies the physical mechanisms which lead to tool failure and identifies general strategies for reducing failure rates and increasing tool life Includes common machinability criteria, tests, and indices Breaks down the economics of machining operations Offers an overview of the engineering aspects of MQL machining Summarizes gear machining and finishing methods for common gear types, and more Metal Cutting Theory and Practice, Third Edition emphasizes the physical understanding and analysis for robust process design, troubleshooting, and improvement, and aids manufacturing engineering professionals, and engineering students in manufacturing engineering and machining processes programs.