Dynamic Methods for Damage Detection in Structures


Book Description

Non destructive testing aimed at monitoring, structural identification and di- nostics is of strategic importance in many branches of civil and mechanical - gineering. This type of tests is widely practiced and directly affects topical issues regarding the design of new buildings and the repair and monitoring of existing ones. The load bearing capacity of a structure can now be evaluated using well established mechanical modelling methods aided by computing facilities of great capability. However, to ensure reliable results, models must be calibrated with - curate information on the characteristics of materials and structural components. To this end, non destructive techniques are a useful tool from several points of view. Particularly, by measuring structural response, they provide guidance on the validation of structural descriptions or of the mathematical models of material behaviour. Diagnostic engineering is a crucial area for the application of non destructive testing methods. Repeated tests over time can indicate the emergence of p- sible damage occurring during the structure's lifetime and provide quantitative estimates of the level of residual safety.




Vibration-based Techniques For Damage Detection And Localization In Engineering Structures


Book Description

In the oil and gas industries, large companies are endeavoring to find and utilize efficient structural health monitoring methods in order to reduce maintenance costs and time. Through an examination of the vibration-based techniques, this title addresses theoretical, computational and experimental methods used within this trend.By providing comprehensive and up-to-date coverage of established and emerging processes, this book enables the reader to draw their own conclusions about the field of vibration-controlled damage detection in comparison with other available techniques. The chapters offer a balance between laboratory and practical applications, in addition to detailed case studies, strengths and weakness are drawn from a broad spectrum of information.




Structural Health Monitoring


Book Description

This book is organized around the various sensing techniques used to achieve structural health monitoring. Its main focus is on sensors, signal and data reduction methods and inverse techniques, which enable the identification of the physical parameters, affected by the presence of the damage, on which a diagnostic is established. Structural Health Monitoring is not oriented by the type of applications or linked to special classes of problems, but rather presents broader families of techniques: vibration and modal analysis; optical fibre sensing; acousto-ultrasonics, using piezoelectric transducers; and electric and electromagnetic techniques. Each chapter has been written by specialists in the subject area who possess a broad range of practical experience. The book will be accessible to students and those new to the field, but the exhaustive overview of present research and development, as well as the numerous references provided, also make it required reading for experienced researchers and engineers.




Advanced Structural Damage Detection


Book Description

Structural Health Monitoring (SHM) is the interdisciplinary engineering field devoted to the monitoring and assessment of structural health and integrity. SHM technology integrates non-destructive evaluation techniques using remote sensing and smart materials to create smart self-monitoring structures characterized by increased reliability and long life. Its applications are primarily systems with critical demands concerning performance where classical onsite assessment is both difficult and expensive. Advanced Structural Damage Detection: From Theory to Engineering Applications is written by academic experts in the field and provides students, engineers and other technical specialists with a comprehensive review of recent developments in various monitoring techniques and their applications to SHM. Contributing to an area which is the subject of intensive research and development, this book offers both theoretical principles and feasibility studies for a number of SHM techniques. Key features: Takes a multidisciplinary approach and provides a comprehensive review of main SHM techniques Presents real case studies and practical application of techniques for damage detection in different types of structures Presents a number of new/novel data processing algorithms Demonstrates real operating prototypes Advanced Structural Damage Detection: From Theory to Engineering Applications is a comprehensive reference for researchers and engineers and is a useful source of information for graduate students in mechanical and civil engineering




Structural Health Monitoring of Large Civil Engineering Structures


Book Description

A critical review of key developments and latest advances in Structural Health Monitoring technologies applied to civil engineering structures, covering all aspects required for practical application Structural Health Monitoring (SHM) provides the facilities for in-service monitoring of structural performance and damage assessment, and is a key element of condition based maintenance and damage prognosis. This comprehensive book brings readers up to date on the most important changes and advancements in the structural health monitoring technologies applied to civil engineering structures. It covers all aspects required for such monitoring in the field, including sensors and networks, data acquisition and processing, damage detection techniques and damage prognostics techniques. The book also includes a number of case studies showing how the techniques can be applied in the development of sustainable and resilient civil infrastructure systems. Structural Health Monitoring of Large Civil Engineering Structures offers in-depth chapter coverage of: Sensors and Sensing Technology for Structural Monitoring; Data Acquisition, Transmission, and Management; Structural Damage Identification Techniques; Modal Analysis of Civil Engineering Structures; Finite Element Model Updating; Vibration Based Damage Identification Methods; Model Based Damage Assessment Methods; Monitoring Based Reliability Analysis and Damage Prognosis; and Applications of SHM Strategies to Large Civil Structures. Presents state-of-the-art SHM technologies allowing asset managers to evaluate structural performance and make rational decisions Covers all aspects required for the practical application of SHM Includes case studies that show how the techniques can be applied in practice Structural Health Monitoring of Large Civil Engineering Structures is an ideal book for practicing civil engineers, academics and postgraduate students studying civil and structural engineering.




Damage Identification of Structures


Book Description

The purpose of this book is to compare and evaluate global methods proposed for structural damage identification that use changes in the modal properties of the structure and to provide an assessment of the effectiveness of the methodologies analyzed. A literature review on the subject of structural damage identification is presented. Methods based on changes in displacement mode shapes, the flexibility matrix, the modal curvature and methods based on the FRF-curvature, are discussed. Another purpose is to formulate new structural damage identification methodologies based on the methods examined that can be used for damage assessment of existing structures. This book should be useful to graduate students of structural engineering and professional engineers working in structural health monitoring and damage detection of structures.




Deep Learning Applications, Volume 2


Book Description

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.




New Trends in Vibration Based Structural Health Monitoring


Book Description

This book is a collection of articles covering the six lecture courses given at the CISM School on this topic in 2008. It features contributions by established international experts and offers a coherent and comprehensive overview of the state-of-the art research in the field, thus addressing both postgraduate students and researchers in aerospace, mechanical and civil engineering.




Structural Health Monitoring Damage Detection Systems for Aerospace


Book Description

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.




System and Damage Identification of Civil Structures


Book Description

In recent years, structural health monitoring has received increasing attention in the civil engineering research community with the objective to identify structural damage at the earliest possible stage and evaluate the remaining useful life (damage prognosis) of structures. Vibration-based, non-destructive damage identification is based on changes in dynamic characteristics (e.g., modal parameters) of a structure for identifying structural damage. Experimental modal analysis (EMA) has been used as a technology for identifying modal parameters of a structure based on its measured vibration data. It should be emphasized that the success of damage identification based on EMA depends strongly on the accuracy and completeness of the identified structural dynamic properties. The objective of the research work presented in this thesis is to develop new, and improve/extend existing system identification and damage identification methods for vibration based structural health monitoring. In the first part of the thesis, a new system identification method is developed to identify modal parameters of linear dynamic systems subjected to measured (known) arbitrary dynamic loading from known initial conditions. In addition, a comparative study is performed to investigate the performance of several state-of-the-art input-output and output-only system identification methods when applied to actual large structural components and systems. In the second part of the thesis, a finite element model updating strategy, a sophisticated damage identification method, is formulated and computer implemented. This method is then successfully applied for damage identification of two large test structures, namely a full-scale sub-component composite beam and a full-scale seven-story R/C building slice, at various damage levels. The final part of the thesis investigates, based on numerical response simulation of the seven-story building slice, the effects of the variability/uncertainty of several input factors on the variability/uncertainty of system identification and damage identification results. The results of this investigation demonstrate that the level of confidence in the damage identification results obtained through FE model updating is a function of not only the level of uncertainty in the identified modal parameters, but also choices made in the design of experiments (e.g., spatial density of measurements) and modeling errors (e.g., mesh size).