Image Understanding in the '90s


Book Description




Vision as Process


Book Description

Human and animal vision systems have been driven by the pressures of evolution to become capable of perceiving and reacting to their environments as close to instantaneously as possible. Casting such a goal of reactive vision into the framework of existing technology necessitates an artificial system capable of operating continuously, selecting and integrating information from an environment within stringent time delays. The YAP (Vision As Process) project embarked upon the study and development of techniques with this aim in mind. Since its conception in 1989, the project has successfully moved into its second phase, YAP II, using the integrated system developed in its predecessor as a basis. During the first phase of the work the "vision as a process paradigm" was realised through the construction of flexible stereo heads and controllable stereo mounts integrated in a skeleton system (SA V A) demonstrating continuous real-time operation. It is the work of this fundamental period in the V AP story that this book aptly documents. Through its achievements, the consortium has contributed to building a strong scientific base for the future development of continuously operating machine vision systems, and has always underlined the importance of not just solving problems of purely theoretical interest but of tackling real-world scenarios. Indeed the project members should now be well poised to contribute (and take advantage of) industrial applications such as navigation and process control, and already the commercialisation of controllable heads is underway.




Data Fusion for Sensory Information Processing Systems


Book Description

The science associated with the development of artificial sen sory systems is occupied primarily with determining how information about the world can be extracted from sensory data. For example, computational vision is, for the most part, concerned with the de velopment of algorithms for distilling information about the world and recognition of various objects in the environ (e. g. localization ment) from visual images (e. g. photographs or video frames). There are often a multitude of ways in which a specific piece of informa tion about the world can be obtained from sensory data. A subarea of research into sensory systems has arisen which is concerned with methods for combining these various information sources. This field is known as data fusion, or sensor fusion. The literature on data fusion is extensive, indicating the intense interest in this topic, but is quite chaotic. There are no accepted approaches, save for a few special cases, and many of the best methods are ad hoc. This book represents our attempt at providing a mathematical foundation upon which data fusion algorithms can be constructed and analyzed. The methodology that we present in this text is mo tivated by a strong belief in the importance of constraints in sensory information processing systems. In our view, data fusion is best un derstood as the embedding of multiple constraints on the solution to a sensory information processing problem into the solution pro cess.




Foundations of Image Understanding


Book Description

Computer systems that analyze images are critical to a wide variety of applications such as visual inspections systems for various manufacturing processes, remote sensing of the environment from space-borne imaging platforms, and automatic diagnosis from X-rays and other medical imaging sources. Professor Azriel Rosenfeld, the founder of the field of digital image analysis, made fundamental contributions to a wide variety of problems in image processing, pattern recognition and computer vision. Professor Rosenfeld's previous students, postdoctoral scientists, and colleagues illustrate in Foundations of Image Understanding how current research has been influenced by his work as the leading researcher in the area of image analysis for over two decades. Each chapter of Foundations of Image Understanding is written by one of the world's leading experts in his area of specialization, examining digital geometry and topology (early research which laid the foundations for many industrial machine vision systems), edge detection and segmentation (fundamental to systems that analyze complex images of our three-dimensional world), multi-resolution and variable resolution representations for images and maps, parallel algorithms and systems for image analysis, and the importance of human psychophysical studies of vision to the design of computer vision systems. Professor Rosenfeld's chapter briefly discusses topics not covered in the contributed chapters, providing a personal, historical perspective on the development of the field of image understanding. Foundations of Image Understanding is an excellent source of basic material for both graduate students entering the field and established researchers who require a compact source for many of the foundational topics in image analysis.




Parallel Processing for Artificial Intelligence 1


Book Description

Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discusses parallel processing for semantic networks, which are widely used means for representing knowledge - methods which enable efficient and flexible processing of semantic networks are expected to have high utility for building large-scale knowledge-based systems. The third section explores the automatic parallel execution of production systems, which are used extensively in building rule-based expert systems - systems containing large numbers of rules are slow to execute and can significantly benefit from automatic parallel execution. The exploitation of parallelism for the mechanization of logic is dealt with in the fourth section. While sequential control aspects pose problems for the parallelization of production systems, logic has a purely declarative interpretation which does not demand a particular evaluation strategy. In this area, therefore, very large search spaces provide significant potential for parallelism. In particular, this is true for automated theorem proving. The fifth section considers the problem of constraint satisfaction, which is a useful abstraction of a number of important problems in AI and other fields of computer science. It also discusses the technique of consistent labeling as a preprocessing step in the constraint satisfaction problem. Section VI consists of two articles, each on a different, important topic. The first discusses parallel formulation for the Tree Adjoining Grammar (TAG), which is a powerful formalism for describing natural languages. The second examines the suitability of a parallel programming paradigm called Linda, for solving problems in artificial intelligence.Each of the areas discussed in the book holds many open problems, but it is believed that parallel processing will form a key ingredient in achieving at least partial solutions. It is hoped that the contributions, sourced from experts around the world, will inspire readers to take on these challenging areas of inquiry.




The Biology and Technology of Intelligent Autonomous Agents


Book Description

The NATO sponsored Advanced Study Institute 'The Biology and Tech nology of Intelligent Autonomous Agents' was an extraordinary event. For two weeks it brought together the leading proponents of the new behavior oriented approach to Artificial Intelligence in Castel Ivano near Trento. The goal of the meeting was to establish a solid scientific and technological foun dation for the field of intelligent autonomous agents with a bias towards the new methodologies and techniques that have recently been developed in Ar tificial Intelligence under the strong influence of biology. Major themes of the conference were: bottom-up AI research, artificial life, neural networks and techniques of emergent functionality. The meeting was such an extraordinary event because it not only featured very high quality lectures on autonomous agents and the various fields feeding it, but also robot laboratories which were set up by the MIT AI laboratory (with a lab led by Rodney Brooks) and the VUB AI laboratory (with labs led by Tim Smithers and Luc Steels). This way the participants could also gain practical experience and discuss in concreto what the difficulties and achievements were of different approaches. In fact, the meeting has been such a success that a follow up meeting is planned for September 1995 in Monte Verita (Switzerland). This meeting is organised by Rolf Pfeifer (University of Zurich).




Physics-Based Vision: Principles and Practice


Book Description

Commentaries by the editors to this comprehensive anthology in the area of physics-based vision put the papers in perspective and guide the reader to a thorough understanding of the basics of the field. Paper Topics Include: - Intensity Reflection Models - Polarization and Refraction - Camera Calibration - Quantization and Sampling - Depth from Opt




Progress In Image Analysis And Processing Iii - Proceedings Of The 7th International Conference On Image Analysis And Processing


Book Description

This volume contains the proceedings of the 7ICIAP held in Monopoli, Italy.Some of the Areas Covered Include: Active Vision, Computer Vision System; Data Structures and Representations; Feature Extraction; Geometric Modelling; Human Perception and Computer Vision; Image Analysis; Language for Image Modelling; Processing and Retrieval; Motion Analysis and Time Varying Images; Neurocomputing for Recognition; Parallel Computer Architecture; Pattern Recognition; Picture and Video Coding.