Data Analysis in Cosmology


Book Description

The amount of cosmological data has dramatically increased in the past decades due to an unprecedented development of telescopes, detectors and satellites. Efficiently handling and analysing new data of the order of terabytes per day requires not only computer power to be processed but also the development of sophisticated algorithms and pipelines. Aiming at students and researchers the lecture notes in this volume explain in pedagogical manner the best techniques used to extract information from cosmological data, as well as reliable methods that should help us improve our view of the universe.




Data Analysis in Astronomy


Book Description

The international Workshop on "Data Analysis in Astronomy" was in tended to give a presentation of experiences that have been acqui red in data analysis and image processing, developments and appli cations that are steadly growing up in Astronomy. The quality and the quantity of ground and satellite observations require more so phisticated data analysis methods and better computational tools. The Workshop has reviewed the present state of the art, explored new methods and discussed a wide range of applications. The topics which have been selected have covered the main fields of interest for data analysis in Astronomy. The Workshop has been focused on the methods used and their significant applications. Results which gave a major contribution to the physical interpre tation of the data have been stressed in the presentations. Atten tion has been devoted to the description of operational system for data analysis in astronomy. The success of the meeting has been the results of the coordinated effort of several people from the organizers to those who presen ted a contribution and/or took part in the discussion. We wish to thank the members of the Workshop scientific committee Prof. M. Ca paccioli, Prof. G. De Biase, Prof. G. Sedmak, Prof. A. Zichichi and of the local organizing committee Dr. R. Buccheri and Dr. M.C. Macca rone together with Miss P. Savalli and Dr. A. Gabriele of the E. Majo rana Center for their support and the unvaluable part in arranging the Workshop.




Modern Cosmology


Book Description

An advanced text for senior undergraduates, graduate students and physical scientists in fields outside cosmology. This is a self-contained book focusing on the linear theory of the evolution of density perturbations in the universe, and the anisotropiesin the cosmic microwave background.




Statistical Methods for Astronomical Data Analysis


Book Description

This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.




Bayesian Methods in Cosmology


Book Description

Comprehensive introduction to Bayesian methods in cosmological studies, for graduate students and researchers in cosmology, astrophysics and applied statistics.




Lectures on Cosmology


Book Description

The lectures that four authors present in this volume investigate core topics related to the accelerated expansion of the Universe. Accelerated expansion occured in the ?36 very early Universe – an exponential expansion in the in ationary period 10 s after the Big Bang. This well-established theoretical concept had rst been p- posed in 1980 by Alan Guth to account for the homogeneity and isotropy of the observable universe, and simultaneously by Alexei Starobinski, and has since then been developed by many authors in great theoretical detail. An accelerated expansion of the late Universe at redshifts z




Data Analysis Techniques for High-Energy Physics


Book Description

Now thoroughly revised and up-dated, this book describes techniques for handling and analysing data obtained from high-energy and nuclear physics experiments. The observation of particle interactions involves the analysis of large and complex data samples. Beginning with a chapter on real-time data triggering and filtering, the book describes methods of selecting the relevant events from a sometimes huge background. The use of pattern recognition techniques to group the huge number of measurements into physically meaningful objects like particle tracks or showers is then examined and the track and vertex fitting methods necessary to extract the maximum amount of information from the available measurements are explained. The final chapter describes tools and methods which are useful to the experimenter in the physical interpretation and in the presentation of the results. This indispensable guide will appeal to graduate students, researchers and computer and electronic engineers involved with experimental physics.




Data Analysis in Cosmology


Book Description

The amount of cosmological data has dramatically increased in the past decades due to an unprecedented development of telescopes, detectors and satellites. Efficiently handling and analysing new data of the order of terabytes per day requires not only computer power to be processed but also the development of sophisticated algorithms and pipelines. Aiming at students and researchers the lecture notes in this volume explain in pedagogical manner the best techniques used to extract information from cosmological data, as well as reliable methods that should help us improve our view of the universe.




Modern Statistical Methods for Astronomy


Book Description

Modern Statistical Methods for Astronomy: With R Applications.




Asteroseismic Data Analysis


Book Description

Studies of stars and stellar populations, and the discovery and characterization of exoplanets, are being revolutionized by new satellite and telescope observations of unprecedented quality and scope. Some of the most significant advances have been in the field of asteroseismology, the study of stars by observation of their oscillations. Asteroseismic Data Analysis gives a comprehensive technical introduction to this discipline. This book not only helps students and researchers learn about asteroseismology; it also serves as an essential instruction manual for those entering the field. The book presents readers with the foundational techniques used in the analysis and interpretation of asteroseismic data on cool stars that show solar-like oscillations. The techniques have been refined, and in some cases developed, to analyze asteroseismic data collected by the NASA Kepler mission. Topics range from the analysis of time-series observations to extract seismic data for stars to the use of those data to determine global and internal properties of the stars. Reading lists and problem sets are provided, and data necessary for the problem sets are available online. The first book to describe in detail the different techniques used to analyze the data on stellar oscillations, Asteroseismic Data Analysis offers an invaluable window into the hearts of stars. Introduces the asteroseismic study of stars and the theory of stellar oscillations Describes the analysis of observational (time-domain) data Examines how seismic parameters are extracted from observations Explores how stellar properties are determined from seismic data Looks at the “inverse problem,” where frequencies are used to infer internal structures of stars