Data Analysis in Pavement Engineering


Book Description

Data Analysis in Pavement Engineering: Theory and Methodology offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees the significant addition of content addressing coupling problems, including Finite element analysis formulations for coupled problems; Details of algorithms for solving coupled problems; and Examples showing how algorithms can be used to solve for piezoelectricity and poroelasticity problems. Focusing on the core knowledge, mathematical and analytical tools needed for successful application, this book represents the authoritative resource of choice for graduate-level students, researchers and professional engineers involved in finite element-based engineering analysis. - This book is the first comprehensive resource to cover all potential scenarios of data analysis in pavement and transportation infrastructure research, including areas such as materials testing, performance modeling, distress detection, and pavement evaluation. - It provides coverage of significance tests, design of experiments, data mining, data modeling, and supervised and unsupervised machine learning techniques. - It summarizes the latest research in data analysis within pavement engineering, encompassing over 300 research papers. - It delves into the fundamental concepts, elements, and parameters of data analysis, empowering pavement engineers to undertake tasks typically reserved for statisticians and data scientists. - The book presents 21 step-by-step case studies, showcasing the application of the data analysis method to address various problems in pavement engineering and draw meaningful conclusions.




Pavement Engineering


Book Description

Pavement Engineering will cover the entire range of pavement construction, from soil preparation to structural design and life-cycle costing and analysis. It will link the concepts of mix and structural design, while also placing emphasis on pavement evaluation and rehabilitation techniques. State-of-the-art content will introduce the latest concepts and techniques, including ground-penetrating radar and seismic testing. This new edition will be fully updated, and add a new chapter on systems approaches to pavement engineering, with an emphasis on sustainability, as well as all new downloadable models and simulations.




Pavement and Geotechnical Engineering for Transportation


Book Description

Selected papers from the First International Symposium on Pavement and Geotechnical Engineering for Transportation Infrastructure held in Nanchang, China, June 5-7, 2011. Sponsored by the Nanchang Hangkong University and the International Association of Chinese Infrastructure Professionals (IACIP) in cooperation with the Geo-Institute of ASCE. This Geotechnical Practice Publication contains 20 papers that represent the latest developments in the application of soil, rock, and paving materials to the study and application of geomechanics and transportation geotechnology. Topics include pavement structure and subgrade preparation such as: the use of chemical additives and geogrid reinforcement; performance assessment of concrete and asphalt mixtures; mathematical models for the simulation of geotechnical problems; and evaluation of soil types in relation to slope failure, consolidation, and embankment behavior. GPP 8 focuses on the application of geomechanics in transportation and will be of interest to both geotechnical engineers and transportation professionals.




Paving Materials and Pavement Analysis


Book Description

Pavement Design And Paving Material Selection are important for efficient, cost effective, durable, and safe transportation infrastructure Paving Materials and Pavement Analysis contains 73 papers examining bound and unbound material characterization, modeling, and performance of highway and airfield pavements. The papers in this publication were presented during the GeoShanghal 2010 International Conference held in Shanghai, China, June 3-5, 2010.




Pavement Design: Materials, Analysis, and Highways


Book Description

Master the principles, analysis, and design in pavement engineering This student-friendly textbook offers comprehensive coverage of pavement design and highways. Written by two seasoned civil engineering educators, the book contains precise explanations of traditional and computerized mechanistic design methods along with detailed examples of real-world pavement and highway projects. Pavement Design: Materials, Analysis, and Highways shows, step by step, how to apply the latest, software-based AASHTOWare Pavement Mechanistic-Empirical Design method. Each design topic is covered in separate, modular chapters, enabling you to tailor a course of study. Fundamentals of Engineering (FE) sample questions are also provided in each chapter. Coverage includes: Stress-strain in pavement Soils, aggregates, asphalt, and portland cement concrete Traffic analysis for pavement design Distresses and distress-prediction models in flexible and rigid pavement Flexible and rigid pavement design by AASHTO 1993 and AASHTOWare Overlay and drainage design Sustainable and rehabilitation pavement design, pavement management, and recycling Geometric design of highways







Pavement Engineering


Book Description

Pavement Engineering: Principles and Practice examines a wide range of topics in asphalt and concrete pavements from soil preparation and structural design to life cycle costing and economic analysis. This updated Fourth Edition covers all concepts and practices of pavement engineering in terms of materials, design, and construction methods for both flexible and rigid pavements and includes the latest developments in recycling, sustainable pavement materials, and resilient infrastructure. New and updated topics include material characterization concepts and tests, pavement management concepts, probabilistic examples of life cycle cost analysis, end-of-life considerations, waste plastic in asphalt, pervious concrete, pavement monitoring instrumentation and data acquisition, and more. The latest updated references, state of the art reviews, and online resources have also been included.




The Handbook of Highway Engineering


Book Description

Modern highway engineering reflects an integrated view of a road system's entire lifecycle, including any potential environmental impacts, and seeks to develop a sustainable infrastructure through careful planning and active management. This trend is not limited to developed nations, but is recognized across the globe. Edited by renowned authority




Effective Experiment Design and Data Analysis in Transportation Research


Book Description

This report describes the factors that should be considered in designing experiments and presents 21 typical transportation examples illustrating the experiment design process, including selection of appropriate statistical tests. The examples encompass a wide range of transportation disciplines and statistical methods. This report will be very beneficial to anyone with limited research experience needing to answer a question based on data (e.g., presenting ozone concentrations in a region, determining whether a contractor's quality assurance/quality control procedures are adequate, estimating the effect of automated enforcement on speeds, monitoring trends in the condition of bridge superstructures, developing a user survey to determine the impact of transit fare changes). The report is a companion to NCHRP CD-22, Scientific Approaches to Transportation Research, Volumes 1 and 2, which were developed in NCHRP Project 20-45 and present detailed information on statistical methods.




Bearing Capacity of Roads, Railways and Airfields


Book Description

Bearing Capacity of Roads, Railways and Airfields includes the contributions to the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017, 28-30 June 2017, Athens, Greece). The papers cover aspects related to materials, laboratory testing, design, construction, maintenance and management systems of transport infrastructure, and focus on roads, railways and airfields. Additional aspects that concern new materials and characterization, alternative rehabilitation techniques, technological advances as well as pavement and railway track substructure sustainability are included. The contributions discuss new concepts and innovative solutions, and are concentrated but not limited on the following topics: · Unbound aggregate materials and soil properties · Bound materials characteritics, mechanical properties and testing · Effect of traffic loading · In-situ measurements techniques and monitoring · Structural evaluation · Pavement serviceability condition · Rehabilitation and maintenance issues · Geophysical assessment · Stabilization and reinforcement · Performance modeling · Environmental challenges · Life cycle assessment and sustainability Bearing Capacity of Roads, Railways and Airfields is essential reading for academics and professionals involved or interested in transport infrastructure systems, in particular roads, railways and airfields.