Data Warehousing


Book Description

Rapid access to information is a prime requirement in any organization that wants to have a competitive edge in today's fast changing markets. How to retrieve information? How to capture data? How to format it? The answer lies in Data Warehousing. This HOTT Guide will give you access to all the essential information about the newest data storehouse: through articles by expert trendwachters on strategic considerations, how-to reports defining the various ways to extract the data needed for critical business decisions, technical papers clarifying technologies and tools, business cases and key concepts that will provide the reader with a comprehensive overview of a business solution that is already indispensable.




Data Warehousing and Analytics


Book Description

This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.




Data Mining and Data Warehousing


Book Description

Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.




Implementing a Data Warehouse


Book Description

The purpose of this book is to document the methodology and chronology of work activity used by the author to successfully implement a Data Warehouse. Each of the eleven steps of the methodology is reviewed in the book, often using actual working documents as examples. The book contains lessons learned (both good and bad) as well as measures of success for each step. An essential aspect of DW project implementation (and other IT projects as well) is using established business practices to manage development and implementation. Discussion of use of these "due diligence" practices in Step 1 establishes the foundation for starting the DW project with the proper levels of management oversight. Step 2 presents examples of business models necessary for the DW developer to understand the needs of the business that the DW will serve. Other DW books describe the data modeling process but neglect to provide modeling instruction and actual examples to insure that the DW is properly aligned with business needs. An elegant data warehouse that doesn't meet the needs of the business is wasted effort. Step 3 documents and displays the level of detail needed to define CSF's (Critical Success Factors) and KPI's (Key Performance Indicators). If calculations for these important metrics are not defined in detail, and consensus to use them is not reached, then again, the most elegant data warehouse implementation is a wasted effort. In addition, developing and documenting functional requirements is essential in identifying legacy system reporting deficiencies. Step 4 describes how to access and display field level information on the iSeries platform. Actual shots of the resulting screens are shown. Step 5 presents the functional contents of an RFP for a Data Warehousing tool-set. Step 6 presents the progression of work required to build a data warehouse. Step 6 also: · Describes and displays a hybrid dimensional to flat file data model that may be, in reality, the best data organizational model for a typical data warehouse. Also, a table is included showing examples of data file field cryptic names and their corresponding metadata name. · &nb




Evolving Application Domains of Data Warehousing and Mining


Book Description

"This book provides insight into the latest findings concerning data warehousing, data mining, and their applications in everyday human activities"--Provided by publisher.




DW 2.0: The Architecture for the Next Generation of Data Warehousing


Book Description

DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level. The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0. It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals. - First book on the new generation of data warehouse architecture, DW 2.0 - Written by the "father of the data warehouse", Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network - Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control




Data Warehousing Fundamentals


Book Description

Geared to IT professionals eager to get into the all-importantfield of data warehousing, this book explores all topics needed bythose who design and implement data warehouses. Readers will learnabout planning requirements, architecture, infrastructure, datapreparation, information delivery, implementation, and maintenance.They'll also find a wealth of industry examples garnered from theauthor's 25 years of experience in designing and implementingdatabases and data warehouse applications for majorcorporations. Market: IT Professionals, Consultants.




Building a Data Warehouse


Book Description

Here is the ideal field guide for data warehousing implementation. This book first teaches you how to build a data warehouse, including defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Coverage then explains how to populate the data warehouse and explores how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. It also details testing and how to administer data warehouse operation.




Computerworld


Book Description

For more than 40 years, Computerworld has been the leading source of technology news and information for IT influencers worldwide. Computerworld's award-winning Web site (Computerworld.com), twice-monthly publication, focused conference series and custom research form the hub of the world's largest global IT media network.




Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications


Book Description

In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.