Desorption Induced by Electronic Transitions DIET V


Book Description

This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in order to emphasize the wide range of materials that are examined and to highlight recent experimental and theoretical advances. Naturally, there is considerable overlap between sections, and many papers would be appropriate in more than one part. Part I focuses on perhaps the most active area in the field today: electron attachment. Here the detection and characterization of negative ions formed by attachment of elec trons supplied externally from the vacuum are discussed. In addition, the first observations of negative ions formed by substrate photoelectrons are presented.




Radiation in Bioanalysis


Book Description

This book describes the state of the art across the broad range of spectroscopic techniques used in the study of biological systems. It reviews some of the latest advances achieved in the application of these techniques in the analysis and characterization of small and large biological compounds, covering topics such as VUV/UV and UV-visible spectroscopies, fluorescence spectroscopy, IR and Raman techniques, dynamic light scattering (DLS), circular dichroism (CD/SR-CD), pulsed electron paramagnetic resonance techniques, Mössbauer spectroscopy, nuclear magnetic resonance, X-ray methods and electron and ion impact spectroscopies. The second part of the book focuses on modelling methods and illustrates how these tools have been used and integrated with other experimental and theoretical techniques including also electron transfer processes and fast kinetics methods. The book will benefit students, researchers and professionals working with these techniques to understand the fundamental mechanisms of biological systems.




Dynamical Processes in Atomic and Molecular Physics


Book Description

Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Recent theoretical developments as well as new discoveries and observations are discussed. the Book should be of interest to students studying atomic and molecular physics and specialists in related fields of science and technology.




Computational Strategies for Spectroscopy


Book Description

Computational spectroscopy is a rapidly evolving field that is becoming a versatile and widespread tool for the assignment of experimental spectra and their interpretation as related to chemical physical effects. This book is devoted to the most significant methodological contributions in the field, and to the computation of IR, UV-VIS, NMR and EPR spectral parameters with reference to the underlying vibronic and environmental effects. Each section starts with a chapter written by an experimental spectroscopist dealing with present challenges in the different fields; comprehensive coverage of conventional and advanced spectroscopic techniques is provided by means of dedicated chapters written by experts. Computational chemists, analytical chemists and spectroscopists, physicists, materials scientists, and graduate students will benefit from this thorough resource.




Fundamentals of Mass Spectrometry


Book Description

Most research and all publications in mass spectrometry address either applications or practical questions of procedure. This book, in contrast, discusses the fundamentals of mass spectrometry. Since these basics (physics, chemistry, kinetics, and thermodynamics) were worked out in the 20th century, they are rarely addressed nowadays and young scientists have no opportunity to learn them. This book reviews a number of useful methods in mass spectrometry and explains not only the details of the methods but the theoretical underpinning.




R”ntgen Centennial


Book Description

To honour W C R”ntgen and review the entire area of X-ray development in the various fields of natural, technical, and life sciences, his successors at the Physikalisches Institut of the Universit„t Wrzburg organized a conference, named ?R”ntgen Centennial?. It took place at the new ?Physikalisches Institut? not far from the historical site shortly before the actual 100th anniversary of the discovery. Over forty renowned scientists were invited as representative speakers in the various subfields of X-ray activities. They reviewed the development, gave examples, and described the present status. Most of them provided survey articles, which are gathered in this book. Since most X-ray-related activities are somehow represented, an almost complete overview of the entire field is provided. This book thus represents the enormous breadth of X-ray activities and allows one to recognize the potential and quality of today's X-ray research.




Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation


Book Description

This is the first comprehensive treatment of the interactions of atoms and molecules with charged particles, photons and laser fields. Addressing the subject from a unified viewpoint, the volume reflects our present understanding of many-particle dynamics in rearrangement and fragmentation reactions.




Handbook of High-resolution Spectroscopy


Book Description

The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for over 15 years Brings together the knowledge of spectroscopy, laser technology, chemical computation and experiments Brings the reader up-to-date with the many advances that have been made in recent times Takes the reader through the range of wavelengths, covering all possible techniques such as Microwave Spectroscopy, Infrared Spectroscopy, Raman Spectroscopy, VIS, UV and VUV Combines theoretical, computational and experimental aspects Has numerous applications in a wide range of scientific domains Edited by two leaders in this field Provides an overview of rotational, vibration, electronic and photoelectron spectroscopy Volume 1 - Introduction: Fundamentals of Molecular Spectroscopy Volume 2 - High-Resolution Molecular Spectroscopy: Methods and Results Volume 3 - Special Methods & Applications