Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications


Book Description

Deep Learning for EEG-Based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices.This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI data sets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.Related Link(s)




Signal Processing and Machine Learning for Brain-Machine Interfaces


Book Description

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions.




Machine Learning: Theory and Applications


Book Description

Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. - Very relevant to current research challenges faced in various fields - Self-contained reference to machine learning - Emphasis on applications-oriented techniques




Connected Health in Smart Cities


Book Description

This book reports on the theoretical foundations, fundamental applications and latest advances in various aspects of connected services for health information systems. The twelve chapters highlight state-of-the-art approaches, methodologies and systems for the design, development, deployment and innovative use of multisensory systems and tools for health management in smart city ecosystems. They exploit technologies like deep learning, artificial intelligence, augmented and virtual reality, cyber physical systems and sensor networks. Presenting the latest developments, identifying remaining challenges, and outlining future research directions for sensing, computing, communications and security aspects of connected health systems, the book will mainly appeal to academic and industrial researchers in the areas of health information systems, smart cities, and augmented reality.




Brain-Computer Interfaces


Book Description

The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.




Toward Brain-computer Interfacing


Book Description

This volume presents a timely overview of the latest BCI research, with contributions from many of the important research groups in the field.




Handbook of Neuroengineering


Book Description

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​




EEG Signal Processing and Feature Extraction


Book Description

This book presents the conceptual and mathematical basis and the implementation of both electroencephalogram (EEG) and EEG signal processing in a comprehensive, simple, and easy-to-understand manner. EEG records the electrical activity generated by the firing of neurons within human brain at the scalp. They are widely used in clinical neuroscience, psychology, and neural engineering, and a series of EEG signal-processing techniques have been developed. Intended for cognitive neuroscientists, psychologists and other interested readers, the book discusses a range of current mainstream EEG signal-processing and feature-extraction techniques in depth, and includes chapters on the principles and implementation strategies.




Intelligent Computing in Bioinformatics


Book Description

This book – in conjunction with the volumes LNCS 8588 and LNAI 8589 – constitutes the refereed proceedings of the 10th International Conference on Intelligent Computing, ICIC 2014, held in Taiyuan, China, in August 2014. The 58 papers of this volume were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections such as machine learning; neural networks; image processing; computational systems biology and medical informatics; biomedical informatics theory and methods; advances on bio-inspired computing; protein and gene bioinformatics: analysis, algorithms, applications.




Brain-Computer Interface Research


Book Description

This book describes the prize-winning brain-computer-interface (BCI) projects honored in the community's most prestigious annual award. BCIs enable people to communicate and control their limbs and/or environment using thought processes alone. Research in this field continues to develop and expand rapidly, with many new ideas, research groups, and improved technologies having emerged in recent years. The chapters in this volume feature the newest developments from many of the best labs worldwide. They present both non-invasive systems (based on the EEG) and intracortical methods (based on spikes or ECoG), and numerous innovative applications that will benefit new user groups