Deep Learning Techniques for Automation and Industrial Applications


Book Description

This book provides state-of-the-art approaches to deep learning in areas of detection and prediction, as well as future framework development, building service systems and analytical aspects in which artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. Deep learning algorithms and techniques are found to be useful in various areas, such as automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delays in children. “Deep Learning Techniques for Automation and Industrial Applications” presents a concise introduction to the recent advances in this field of artificial intelligence (AI). The broad-ranging discussion covers the algorithms and applications in AI, reasoning, machine learning, neural networks, reinforcement learning, and their applications in various domains like agriculture, manufacturing, and healthcare. Applying deep learning techniques or algorithms successfully in these areas requires a concerted effort, fostering integrative research between experts from diverse disciplines from data science to visualization. This book provides state-of-the-art approaches to deep learning covering detection and prediction, as well as future framework development, building service systems, and analytical aspects. For all these topics, various approaches to deep learning, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms, are explained. Audience The book will be useful to researchers and industry engineers working in information technology, data analytics network security, and manufacturing. Graduate and upper-level undergraduate students in advanced modeling and simulation courses will find this book very useful.




Machine Learning in Industry


Book Description

This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.




Artificial Intelligence in Industrial Applications


Book Description

This book highlights the analytics and optimization issues in industry, to propose new approaches, and to present applications of innovative approaches in real facilities. In the past few decades there has been an exponential rise in the application of artificial intelligence for solving complex and intricate problems arising in industrial domain. The versatility of these techniques have made them a favorite among scientists and researchers working in diverse areas. The book is edited to serve a broad readership, including computer scientists, medical professionals, and mathematicians interested in studying computational intelligence and their applications. It will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of Artificial Intelligence and Industrial problems. This book will be a useful resource for researchers, academicians as well as professionals interested in the highly interdisciplinary field of Artificial Intelligence.




Deep Learning Applications, Volume 2


Book Description

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.




Deep Learning Model Optimization, Deployment and Improvement Techniques for Edge-native Applications


Book Description

The edge AI implementation technologies are fast maturing and stabilizing. Edge AI digitally transforms retail, manufacturing, healthcare, financial services, transportation, telecommunication, and energy. The transformative potential of Edge AI, a pivotal force in driving the evolution from Industry 4.0’s smart manufacturing and automation to Industry 5.0’s human-centric, sustainable innovation. The exploration of the cutting-edge technologies, tools, and applications that enable real-time data processing and intelligent decision-making at the network’s edge, addressing the increasing demand for efficiency, resilience, and personalization in industrial systems. Our book aims to provide readers with a comprehensive understanding of how Edge AI integrates with existing infrastructures, enhances operational capabilities, and fosters a symbiotic relationship between human expertise and machine intelligence. Through detailed case studies, technical insights, and practical guidelines, this book serves as an essential resource for professionals, researchers, and enthusiasts poised to harness the full potential of Edge AI in the rapidly advancing industrial landscape.




Automated Software Engineering: A Deep Learning-Based Approach


Book Description

This book discusses various open issues in software engineering, such as the efficiency of automated testing techniques, predictions for cost estimation, data processing, and automatic code generation. Many traditional techniques are available for addressing these problems. But, with the rapid changes in software development, they often prove to be outdated or incapable of handling the software’s complexity. Hence, many previously used methods are proving insufficient to solve the problems now arising in software development. The book highlights a number of unique problems and effective solutions that reflect the state-of-the-art in software engineering. Deep learning is the latest computing technique, and is now gaining popularity in various fields of software engineering. This book explores new trends and experiments that have yielded promising solutions to current challenges in software engineering. As such, it offers a valuable reference guide for a broad audience including systems analysts, software engineers, researchers, graduate students and professors engaged in teaching software engineering.




Machine Learning Techniques and Industry Applications


Book Description

In today's rapidly evolving world, the exponential growth of data poses a significant challenge. As data volumes increase, traditional methods of analysis and decision-making become inadequate. This surge in data complexity calls for innovative solutions that efficiently extract meaningful insights. Machine learning has emerged as a powerful tool to address this challenge, offering algorithms and techniques to analyze large datasets and uncover hidden patterns, trends, and correlations. Machine Learning Techniques and Industry Applications demystifies machine learning through detailed explanations, examples, and case studies, making it accessible to a broad audience. Whether you're a student, researcher, or practitioner, this book equips you with the knowledge and skills needed to harness the power of machine learning to address diverse challenges. From e-government to healthcare, cyber-physical systems to agriculture, this book explores how machine learning can drive innovation and sustainable development.




Machine Learning Techniques for Smart City Applications: Trends and Solutions


Book Description

This book discusses the application of different machine learning techniques to the sub-concepts of smart cities such as smart energy, transportation, waste management, health, infrastructure, etc. The focus of this book is to come up with innovative solutions in the above-mentioned issues with the purpose of alleviating the pressing needs of human society. This book includes content with practical examples which are easy to understand for readers. It also covers a multi-disciplinary field and, consequently, it benefits a wide readership including academics, researchers, and practitioners.




Deep Learning Techniques for Automation and Industrial Applications


Book Description

This book provides state-of-the-art approaches to deep learning in areas of detection and prediction, as well as future framework development, building service systems and analytical aspects in which artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. Deep learning algorithms and techniques are found to be useful in various areas, such as automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delays in children. “Deep Learning Techniques for Automation and Industrial Applications” presents a concise introduction to the recent advances in this field of artificial intelligence (AI). The broad-ranging discussion covers the algorithms and applications in AI, reasoning, machine learning, neural networks, reinforcement learning, and their applications in various domains like agriculture, manufacturing, and healthcare. Applying deep learning techniques or algorithms successfully in these areas requires a concerted effort, fostering integrative research between experts from diverse disciplines from data science to visualization. This book provides state-of-the-art approaches to deep learning covering detection and prediction, as well as future framework development, building service systems, and analytical aspects. For all these topics, various approaches to deep learning, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms, are explained. Audience The book will be useful to researchers and industry engineers working in information technology, data analytics network security, and manufacturing. Graduate and upper-level undergraduate students in advanced modeling and simulation courses will find this book very useful.




Internet of Things for Industry 4.0


Book Description

This book covers challenges and solutions in establishing Industry 4.0 standards for Internet of Things. It proposes a clear view about the role of Internet of Things in establishing standards. The sensor design for industrial problem, challenges faced, and solutions are all addressed. The concept of digital twin and complexity in data analytics for predictive maintenance and fault prediction is also covered. The book is aimed at existing problems faced by the industry at present, with the goal of cost-efficiency and unmanned automation. It also concentrates on predictive maintenance and predictive failures. In addition, it includes design challenges and a survey of literature.