Defects and Damage in Composite Materials and Structures


Book Description

The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.




Defects and Damage in Composite Materials and Structures


Book Description

The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structu




Composite Structures


Book Description

Presents the latest strategies in the development and use of composite materials for large structures and the effects of defects Practical Design and Validation of Composites Structures: Effects of Defects offers an important guide to the use of fiber-reinforced composites and how they affect the durability and safety of engineering structures such as aircraft, ships, bridges, wind turbines as well as sporting equipment. The text draws on the authors’ direct experience in industry and academia to cover the most recent strategies in the development of composite structures and uniquely integrates the assessment of the effects of defects introduced during production. This comprehensive resource builds on an essential introduction to the characteristics of composites and the most common types of defects encountered in production. The authors review the recent manufacturing methods and technologies used for inspecting composite structures and the design issues related to an analysis of their failure and strength incorporating the variability of processing. The text also contains information on the latest regulatory requirements and the relevant standards associated with the testing and design within a robust design philosophy and approach. This important resource: Offers a comprehensive review of the most current regulatory developments in the use of composites for the construction of complex composite structures Presents information on the basic characteristics of composites Includes testing strategies for determining the impacts of production defects Reviews the most current manufacturing methods and inspection technologies in the field Contains methods for statistical analysis and processing of experimental effects of defects test data Written for professional engineers in mechanical engineering, automotive engineering, aerospace engineering, civil engineering, and energy engineering as well as industry and academic researchers, Practical Design and Validation of Composites Structures: Effects of Defects is the hands-on text that covers the essential information needed to understand the use of composites and how they affect complex engineering projects using composites.




Damage Modeling of Composite Structures


Book Description

Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods




Advanced Mechanics of Composite Materials


Book Description

Composite materials have been representing most significant breakthroughs in various industrial applications, particularly in aerospace structures, during the past thirty five years. The primary goal of Advanced Mechanics of Composite Materials is the combined presentation of advanced mechanics, manufacturing technology, and analysis of composite materials. This approach lets the engineer take into account the essential mechanical properties of the material itself and special features of practical implementation, including manufacturing technology, experimental results, and design characteristics. Giving complete coverage of the topic: from basics and fundamentals to the advanced analysis including practical design and engineering applications. At the same time including a detailed and comprehensive coverage of the contemporary theoretical models at the micro- and macro- levels of material structure, practical methods and approaches, experimental results, and optimisation of composite material properties and component performance. The authors present the results of more than 30 year practical experience in the field of design and analysis of composite materials and structures. * Eight chapters progressively covering all structural levels of composite materials from their components through elementary plies and layers to laminates* Detailed presentation of advanced mechanics of composite materials * Emphasis on nonlinear material models (elasticity, plasticity, creep) and structural nonlinearity




Impact Behaviour of Fibre-Reinforced Composite Materials and Structures


Book Description

This study covers impact response, damage tolerance and failure of fibre-reinforced composite materials and structures. Materials development, analysis and prediction of structural behaviour and cost-effective design all have a bearing on the impact response of composites and this book brings together for the first time the most comprehensive and up-to-date research work from leading international experts. - State of the art analysis of impact response, damage tolerance and failure of FRC materials - Distinguished contributors provide expert analysis of the most recent materials and structures - Valuable tool for R&D engineers, materials scientists and designers




Damage and Failure of Composite Materials


Book Description

Bringing together materials mechanics and modelling, this book provides a complete guide to damage mechanics of composite materials for engineers.




Structural Health Monitoring Damage Detection Systems for Aerospace


Book Description

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.




Structural Health Monitoring For Advanced Composite Structures


Book Description

Structural health monitoring (SHM) is a relatively new and alternative way of non-destructive inspection (NDI). It is the process of implementing a damage detection and characterization strategy for composite structures. The basis of SHM is the application of permanent fixed sensors on a structure, combined with minimum manual intervention to monitor its structural integrity. These sensors detect changes to the material and/or geometric properties of a structural system, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance.This book's primary focus is on the diagnostics element of SHM, namely damage detection in composite structures. The techniques covered include the use of Piezoelectric transducers for active and passive Ultrasonics guided waves and electromechanical impedance measurements, and fiber optic sensors for strain sensing. It also includes numerical modeling of wave propagation in composite structures. Contributed chapters written by leading researchers in the field describe each of these techniques, making it a key text for researchers and NDI practitioners as well as postgraduate students in a number of specialties including materials, aerospace, mechanical and computational engineering.




Failure and Damage Analysis of Advanced Materials


Book Description

The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.