Deformations of Coherent Analytic Sheaves with Compact Supports


Book Description

This paper is devoted to the construction of a semi-universal deformation of any coherent analytic sheaf on a complex space which has compact support. The procedure is constructive and elementary. It uses the power series method and the division and extension theory of ideals in power series rings developed by Grauert. This procedure has a number of important special features involving new techniques, three of which this paper explores at some length.




Varietes Analytiques Compactes


Book Description




Complex Geometry


Book Description

This volume contains a collection of research papers dedicated to Hans Grauert on the occasion of his seventieth birthday. Hans Grauert is a pioneer in modern complex analysis, continuing the il lustrious German tradition in function theory of several complex variables of Weierstrass, Behnke, Thullen, Stein, Siegel, and many others. When Grauert came on the scene in the early 1950's, function theory was going through a revolutionary period with the geometric theory of complex spaces still in its embryonic stage. A rich theory evolved with the joint efforts of many great mathematicians including Oka, Kodaira, Cartan, and Serre. The Car tan Seminar in Paris and the Kodaira Seminar provided important venues an for its development. Grauert, together with Andreotti and Remmert, took active part in the latter. In his career he has nurtured a great number of his own doctoral students as well as other young mathematicians in his field from allover the world. For a couple of decades his work blazed the trail and set the research agenda in several complex variables worldwide. Among his many fundamentally important contributions, which are too numerous to completely enumerate here, are: 1. The complete clarification of various notions of complex spaces. 2. The solution of the general Levi problem and his work on pseudo convexity for general manifolds. 3. The theory of exceptional analytic sets. 4. The Oka principle for holomorphic bundles. 5. The proof of the Mordell conjecture for function fields. 6. The direct image theorem for coherent sheaves.







Applications of Sheaves


Book Description




A Theory of Generalized Donaldson-Thomas Invariants


Book Description

This book studies generalized Donaldson-Thomas invariants $\bar{DT}{}^\alpha(\tau)$. They are rational numbers which `count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on $X$; strictly $\tau$-semistable sheaves must be counted with complicated rational weights. The $\bar{DT}{}^\alpha(\tau)$ are defined for all classes $\alpha$, and are equal to $DT^\alpha(\tau)$ when it is defined. They are unchanged under deformations of $X$, and transform by a wall-crossing formula under change of stability condition $\tau$. To prove all this, the authors study the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on $X$. They show that an atlas for $\mathfrak M$ may be written locally as $\mathrm{Crit}(f)$ for $f:U\to{\mathbb C}$ holomorphic and $U$ smooth, and use this to deduce identities on the Behrend function $\nu_\mathfrak M$. They compute the invariants $\bar{DT}{}^\alpha(\tau)$ in examples, and make a conjecture about their integrality properties. They also extend the theory to abelian categories $\mathrm{mod}$-$\mathbb{C}Q\backslash I$ of representations of a quiver $Q$ with relations $I$ coming from a superpotential $W$ on $Q$.




Complex Analysis


Book Description

This volume contains the Proceedings of the International Workshop "Complex Analysis", which was held from February 12-16, 1990, in Wuppertal (Germany) in honour of H. Grauert, one of the most creative mathematicians in Complex Analysis of this century. In complete accordance with the width of the work of Grauert the book contains research notes and longer articles of many important mathematicians from all areas of Complex Analysis (Altogether there a re 49 articles in the volume). Some of the main subjects are: Cau chy-Riemann Equations with estimates, q-convexity, CR structures, deformation theory, envelopes of holomorphy, function algebras, complex group actions, Hodge theory, instantons, Kähler geometry, Lefschetz theorems, holomorphic mappings, Nevanlinna theory, com plex singularities, twistor theory, uniformization.




Several Complex Variables IV


Book Description

This volume of the EMS contains four survey articles on analytic spaces. They are excellent introductions to each respective area. Starting from basic principles in several complex variables each article stretches out to current trends in research. Graduate students and researchers will find a useful addition in the extensive bibliography at the end of each article.




Algebraic Geometry Santa Cruz 1995


Book Description




Mathematical Reviews


Book Description