Delay Effects on Stability


Book Description

This monograph is devoted to the effect of delays on the stability properties of dynamical systems. Stability regions with respect to the delay parameters are considered, and some sufficient characterizations are proposed. This monograph addresses general delay problems and offers solutions in some cases. In other cases, approximations of the stability regions can be proposed. The interpretation of delays as uncertainty allows the authors to use the advances in robust control and robust convex optimization to solve or to approximate the solutions of the corresponding problems.




Stability, Control, and Computation for Time-Delay Systems


Book Description

Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control design problem, using both analytical methods and numerical algorithms and applicable to a broad class of linear time-delay systems.? In this revised edition, the authors make the leap from stabilization to the design of robust and optimal controllers and from retarded-type to neutral-type delay systems, thus enlarging the scope of the book within control; include new, state-of-the-art material on numerical methods and algorithms to broaden the book?s focus and to reach additional research communities, in particular numerical linear algebra and numerical optimization; and increase the number and range of applications to better illustrate the effectiveness and generality of their approach.?




Dynamic Systems with Time Delays: Stability and Control


Book Description

This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.




Semi-Discretization for Time-Delay Systems


Book Description

This book presents the recently introduced and already widely referred semi-discretization method for the stability analysis of delayed dynamical systems. Delay differential equations often come up in different fields of engineering, like feedback control systems, machine tool vibrations, balancing/stabilization with reflex delay. The behavior of such systems is often counter-intuitive and closed form analytical formulas can rarely be given even for the linear stability conditions. If parametric excitation is coupled with the delay effect, then the governing equation is a delay differential equation with time periodic coefficients, and the stability properties are even more intriguing. The semi-discretization method is a simple but efficient method that is based on the discretization with respect to the delayed term and the periodic coefficients only. The method can effectively be used to construct stability diagrams in the space of system parameters.




Stability of Time-Delay Systems


Book Description

This book is a self-contained presentation of the background and progress of the study of time-delay systems, a subject with broad applications to a number of areas.




Stability, Control, and Computation for Time-Delay Systems


Book Description

Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control design problem, using both analytical methods and numerical algorithms and applicable to a broad class of linear time-delay systems. In this revised edition, the authors make the leap from stabilization to the design of robust and optimal controllers and from retarded-type to neutral-type delay systems, thus enlarging the scope of the book within control; include new, state-of-the-art material on numerical methods and algorithms to broaden the book?s focus and to reach additional research communities, in particular numerical linear algebra and numerical optimization; and increase the number and range of applications to better illustrate the effectiveness and generality of their approach.




Stability and Stabilization of Time-Delay Systems


Book Description

An overall solution to the (robust) stability analysis and stabilisation problem of linear time-delay systems.




Stability, Control and Application of Time-Delay Systems


Book Description

Stability, Control and Application of Time-Delay Systems gives a systematic description of these systems. It includes adequate designs of integrated modeling and control and frequency characterizations. Common themes revolve around creating certain synergies of modeling, analysis, control, computing and applications of time delay systems that achieve robust stability while retaining desired performance quality. The book provides innovative insights into the state-of-the-art of time-delay systems in both theory and practical aspects. It has been edited with an emphasis on presenting constructive theoretical and practical methodological approaches and techniques. - Unifies existing and emerging concepts concerning time delay dynamical systems - Provides a series of the latest results in large-delay analysis and multi-agent and thermal systems with delays - Gives in each chapter numerical and simulation results in order to reflect the engineering practice




Biological Delay Systems


Book Description

In studying the dynamics of populations, whether of animals, plants or cells, it is crucial to allow for delays such as those due to gestation, maturation or transport. This book deals with a fundamental question in the analysis of the effects of delays, namely whether they affect the stability of steady states.




Stability and Controls Analysis for Delay Systems


Book Description

Stability and Controls Analysis for Delay Systems is devoted to stability, controllability and iterative learning control (ILC) to delay systems, including first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from physics, biology, population dynamics, ecology and economics, currently not presented in other books on conventional fields. Delayed exponential matrix function approach is widely used to derive the representation and stability of the solutions and the controllability. ILC design are also established, which can be regarded as a way to find the control function. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique. - Presents the representation and stability of solutions via the delayed exponential matrix function approach - Gives useful sufficient conditions to guarantee controllability - Establishes ILC design and focuses on new systems such as the first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from various subjects