Design and Analysis of Accelerated Tests for Mission Critical Reliability


Book Description

Early approaches to accelerated testing were based on the assumption that there was a simple acceleration factor that would correspond to a linear scaling of time from the operating stress to the accelerating stress. This corresponds to the simplest physical model of the kinetics governing the underlying degradation, but this simple model does not




Statistical Methods for Reliability Data


Book Description

An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.




Risk, Reliability and Safety: Innovating Theory and Practice


Book Description

The safe and reliable performance of many systems with which we interact daily has been achieved through the analysis and management of risk. From complex infrastructures to consumer durables, from engineering systems and technologies used in transportation, health, energy, chemical, oil, gas, aerospace, maritime, defence and other sectors, the management of risk during design, manufacture, operation and decommissioning is vital. Methods and models to support risk-informed decision-making are well established but are continually challenged by technology innovations, increasing interdependencies, and changes in societal expectations. Risk, Reliability and Safety contains papers describing innovations in theory and practice contributed to the scientific programme of the European Safety and Reliability conference (ESREL 2016), held at the University of Strathclyde in Glasgow, Scotland (25—29 September 2016). Authors include scientists, academics, practitioners, regulators and other key individuals with expertise and experience relevant to specific areas. Papers include domain specific applications as well as general modelling methods. Papers cover evaluation of contemporary solutions, exploration of future challenges, and exposition of concepts, methods and processes. Topics include human factors, occupational health and safety, dynamic and systems reliability modelling, maintenance optimisation, uncertainty analysis, resilience assessment, risk and crisis management.




Reliability, Maintainability, and Supportability


Book Description

Focuses on the core systems engineering tasks of writing,managing, and tracking requirements for reliability,maintainability, and supportability that are most likely to satisfycustomers and lead to success for suppliers This book helps systems engineers lead the development ofsystems and services whose reliability, maintainability, andsupportability meet and exceed the expectations of their customersand promote success and profit for their suppliers. This book isorganized into three major parts: reliability, maintainability, andsupportability engineering. Within each part, there is material onrequirements development, quantitative modelling, statisticalanalysis, and best practices in each of these areas. Heavy emphasisis placed on correct use of language. The author discusses the useof various sustainability engineering methods and techniques incrafting requirements that are focused on the customers’needs, unambiguous, easily understood by the requirements’stakeholders, and verifiable. Part of each major division of thebook is devoted to statistical analyses needed to determine whenrequirements are being met by systems operating in customerenvironments. To further support systems engineers in writing,analyzing, and interpreting sustainability requirements, this bookalso Contains “Language Tips” to help systems engineerslearn the different languages spoken by specialists andnon-specialists in the sustainability disciplines Provides exercises in each chapter, allowing the reader to tryout some of the ideas and procedures presented in the chapter Delivers end-of-chapter summaries of the current reliability,maintainability, and supportability engineering best practices forsystems engineers Reliability, Maintainability, and Supportability is a referencefor systems engineers and graduate students hoping to learn how toeffectively determine and develop appropriate requirements so thatdesigners may fulfil the intent of the customer.




Reliability Data Analysis with Excel and Minitab


Book Description

Many reliability engineers are gainfully employed in considerations of the physical nature of components and systems-bringing to bear theories and methodologies of physics, electronics, mechanics, material science, chemistry, and so on. But when a product has been designed and manufactured, its performance in terms of durability, strength, and life become a matter of test, measurement, and analysis. Statistical theories and methodologies provide a large number of analytical tools to assist the reliability engineer in studying the performance of products and the fruits of the physical considerations, even revealing further improvements that can be made in the physical properties. Hence, reliability is a multidisciplined field of endeavor. Statistical theories and methodologies allow estimation of important characteristics as well as levels of confidence or assurance (or lack thereof) with respect to the estimations. They also provide direction in actions necessary to improve estimates and confidence levels if results are too variable to render important decisions. Some derivations are contained in this text, but the approach here is meant to be more practical, in following each topic introduced and expanded with examples. On each topic covered, reasonably practical examples are used to illustrate and demonstrate the procedures introduced and discussed. For all of these examples either Excel files or Minitab files or both have been prepared (available from Quality Press). They can be readily accessed and opened directly in their respective software packages to permit the preparation of new files specifically for use by the reader. "This book provides a much-needed theoretical text to aid advanced reliability engineering data analysis. Applications using Excel and Minitab support a broad span of probability applications for reliability data analysts. I most strongly recommend this book for seasoned Six Sigma Black Belts or statisticians who must support Design for Six Sigma applications for new product development projects. It's rich in food for thought as well as providing a most nourishing banquet for consumption by engineers --- it is not for light reading as a snack, but it must be consumed as a seven-course meal!" Gregory H. Watson Chairman, International Academy for Quality ASQ Past-President and Fellow




Accelerated Testing


Book Description

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering." –Dev G. Raheja, Quality and Reliability Engineering International ". . . an impressive book. The width and number of topics covered, the practical data sets included, the obvious knowledge and understanding of the author and the extent of published materials reviewed combine to ensure that this will be a book used frequently." –Journal of the Royal Statistical Society A benchmark text in the field, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis offers engineers, scientists, and statisticians a reliable resource on the effective use of accelerated life testing to measure and improve product reliability. From simple data plots to advanced computer programs, the text features a wealth of practical applications and a clear, readable style that makes even complicated physical and statistical concepts uniquely accessible. A detailed index adds to its value as a reference source.







Component Reliability for Electronic Systems


Book Description

The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.




Reliability Growth


Book Description

A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.




Technometrics


Book Description