Mechanical Testing of Advanced Fibre Composites


Book Description

Testing of composite materials can present complex problems but is essential in order to ensure the reliable, safe and cost-effective performance of any engineering structure. This essentially practical book, complied from the contributions of leading professionals in the field, describes a wide range of test methods which can be applied to various types of advanced fibre composites. The book focuses on high modulus, high strength fibre/plastic composites and also covers highly anisotrpoic materials such as carbon, aramid and glass.Engineers and designers specifying the use of materials in structures will find this book an invaluable guide to best practice throughout the range of industrial sectors where FRCs are employed.




Fiber Bragg Gratings


Book Description

Fiber Bragg gratings are flexible, cost-effective and highly efficient, with a vast range of potential applications. This timely new work provides a comprehensive description of the principles and practical applications of this latest technology, which has the potential to revolutionize telecommunications and significantly impact optical fiber sensing. Here the authors explain the underlying physics and practical aspects in a clear and unambiguous manner.




Polymer Optical Fibres


Book Description

Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. - Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF - Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology - Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles - Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion




Distributed Optical Fiber Sensing


Book Description

Serving as a unique, efficient solution to modern demands for security and safety sensing, distributed optical fiber sensing are critical components in areas such as natural disaster prevention and civil engineering. The unique book provides detailed explanations on how to install early warning systems for the prevention of natural disasters, flaws in civil engineering structures (dams, bridges, tunnels), and issues in the oil industry (pipeline leakage detection, off-shore platform anchoring.) Addressing the principles and specificities of distributed fiber sensing, this resource shows different possible implementations, their potential, and their limitations.




Structural Health Monitoring of Civil Infrastructure Systems


Book Description

Structural health monitoring is an extremely important methodology in evaluating the 'health' of a structure by assessing the level of deterioration and remaining service life of civil infrastructure systems. This book reviews key developments in research, technologies and applications in this area of civil engineering. It discusses ways of obtaining and analysing data, sensor technologies and methods of sensing changes in structural performance characteristics. It also discusses data transmission and the application of both individual technologies and entire systems to bridges and buildings.With its distinguished editors and international team of contributors, Structural health monitoring of civil infrastructure systems is a valuable reference for students in civil and structural engineering programs as well as those studying sensors, data analysis and transmission at universities. It will also be an important source for practicing civil engineers and designers, engineers and researchers developing sensors, network systems and methods of data transmission and analysis, policy makers, inspectors and those responsible for the safety and service life of civil infrastructure. - Reviews key developments in research, technologies and applications - Discusses systems used to obtain and analyse data and sensor technologies - Assesses methods of sensing changes in structural performance




Structural Health Monitoring (SHM) in Aerospace Structures


Book Description

Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet's operating costs. The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts. Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures. This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists. - Provides key information on the potential of SHM in reducing maintenance and repair costs - Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area - Encompasses chapters on smart materials such as electroactive polymers and optical fibers




Structural Health Monitoring


Book Description

This book is organized around the various sensing techniques used to achieve structural health monitoring. Its main focus is on sensors, signal and data reduction methods and inverse techniques, which enable the identification of the physical parameters, affected by the presence of the damage, on which a diagnostic is established. Structural Health Monitoring is not oriented by the type of applications or linked to special classes of problems, but rather presents broader families of techniques: vibration and modal analysis; optical fibre sensing; acousto-ultrasonics, using piezoelectric transducers; and electric and electromagnetic techniques. Each chapter has been written by specialists in the subject area who possess a broad range of practical experience. The book will be accessible to students and those new to the field, but the exhaustive overview of present research and development, as well as the numerous references provided, also make it required reading for experienced researchers and engineers.




Damage Prognosis


Book Description

Damage prognosis is a natural extension of damage detection and structural health monitoring and is forming a growing part of many businesses. This comprehensive volume presents a series of fundamental topics that define the new area of damage prognosis. Bringing together essential information in each of the basic technologies necessary to perform damage prognosis, it also reflects the highly interdisciplinary nature of the industry through the extensive referencing of each of the component disciplines. Taken from lectures given at the Pan American Advanced Studies Institute in Damage Prognosis sponsored by the US National Science Foundation in cooperation with Los Alamos National Laboratories, this book will be essential reading for anyone looking to get to grips with the fundamentals of damage prognosis. Presents the 'ground rules' for Damage Prognosis. Deals with interdisciplinary topics: rotating machines, aerospace structures, automotive components and civil structures. Covers essential technical material: equations, graphs and plots, tables and photographs. Offers additional material from the associated workshop on an active web site.