Efficient and Scalable Distributed Shared Memory System


Book Description

This thesis presents the design and implementation of our novel hybrid software DSM system. We call our system hybrid home-based EAC (HHEAC) since the system implements our novel exclusive access consistency model (EAC) based on the hybrid protocol of the homeless and home-based protocols. HHEAC guarantees only that shared variables inside a critical section are up to date before the accesses. Other shared variables outside a critical section are guaranteed to be up to date after the next barrier synchronisation. Our home-based DSM implementation is different from the previous implementations in that a home node does not receive any diffs from non-home nodes until the next barrier synchronisation. It is also different in that during a lock synchronisation required diffs are prefetched before the critical section, which reduces not only data traffic but also page faults inside the critical section. We also present a diff integration technique that can further unnecessary data traffic during lock synchronisation. This technique is especially effective in reducing data traffic for migratory applications.







Distributed Shared Memory


Book Description

Computer Systems Organization -- Parallel architecture.




Consistent Distributed Storage


Book Description

Providing a shared memory abstraction in distributed systems is a powerful tool that can simplify the design and implementation of software systems for networked platforms. This enables the system designers to work with abstract readable and writable objects without the need to deal with the complexity and dynamism of the underlying platform. The key property of shared memory implementations is the consistency guarantee that it provides under concurrent access to the shared objects. The most intuitive memory consistency model is atomicity because of its equivalence with a memory system where accesses occur serially, one at a time. Emulations of shared atomic memory in distributed systems is an active area of research and development. The problem proves to be challenging, and especially so in distributed message passing settings with unreliable components, as is often the case in networked systems. We present several approaches to implementing shared memory services with the help of replication on top of message-passing distributed platforms subject to a variety of perturbations in the computing medium.







Scalable Shared-Memory Multiprocessing


Book Description

Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.







Scalable Shared Memory Multiprocessors


Book Description

Mathematics of Computing -- Parallelism.




Shared-Memory Synchronization


Book Description

Zusammenfassung: This book offers a comprehensive survey of shared-memory synchronization, with an emphasis on "systems-level" issues. It includes sufficient coverage of architectural details to understand correctness and performance on modern multicore machines, and sufficient coverage of higher-level issues to understand how synchronization is embedded in modern programming languages. The primary intended audience for this book is "systems programmers"--the authors of operating systems, library packages, language run-time systems, concurrent data structures, and server and utility programs. Much of the discussion should also be of interest to application programmers who want to make good use of the synchronization mechanisms available to them, and to computer architects who want to understand the ramifications of their design decisions on systems-level code