Design Automation and Applications for Emerging Reconfigurable Nanotechnologies


Book Description

This book is a single-source solution for anyone who is interested in exploring emerging reconfigurable nanotechnology at the circuit level. It lays down a solid foundation for circuits based on this technology having considered both manual as well as automated design flows. The authors discuss the entire design flow, consisting of both logic and physical synthesis for reconfigurable nanotechnology-based circuits. The authors describe how transistor reconfigurable properties can be exploited at the logic level to have a more efficient circuit design flow, as compared to conventional design flows suited for CMOS. Further, the book provides insights into hardware security features that can be intrinsically developed using the runtime reconfigurable features of this nanotechnology.







VLSI-SoC: Technology Advancement on SoC Design


Book Description

This book contains extended and revised versions of the best papers presented at the 29th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2021, held in Singapore, in October 2021*. The 12 full papers included in this volume were carefully reviewed and selected from the 44 papers (out of 75 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.




Design Automation for Field-coupled Nanotechnologies


Book Description

This book discusses the main tasks of Design Automation for Field-coupled Nanocomputing (FCN) technologies, in order to enable large-scale composition of elementary building blocks, that obtain correct systems from given function specifications. To this end, a holistic design flow is described, which covers exact and scalable placement & routing, one-pass logic synthesis, novel clocking mechanisms for data synchronization, and formal verification for obtained circuit layouts. Additionally, theoretical groundwork is presented that lays the foundation for any algorithmic consideration in the future. Furthermore, an open-source FCN design framework called fiction, which contains implementations of all proposed techniques, is presented and made publicly available. The approaches discussed in this book address obstacles that have existed since the conceptualization of the FCN paradigm and could not be resolved since then. As a result, this book substantially advances the state of the art in design automation for FCN technologies.




Emerging Computing: From Devices to Systems


Book Description

The book covers a range of topics dealing with emerging computing technologies which are being developed in response to challenges faced due to scaling CMOS technologies. It provides a sneak peek into the capabilities unleashed by these technologies across the complete system stack, with contributions by experts discussing device technology, circuit, architecture and design automation flows. Presenting a gradual progression of the individual sub-domains and the open research and adoption challenges, this book will be of interest to industry and academic researchers, technocrats and policymakers. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Emerging Nanotechnologies


Book Description

Emerging Nanotechnologies: Test, Defect Tolerance and Reliability covers various technologies that have been developing over the last decades such as chemically assembled electronic nanotechnology, Quantum-dot Cellular Automata (QCA), and nanowires and carbon nanotubes. Each of these technologies offers various advantages and disadvantages. Some suffer from high power, some work in very low temperatures and some others need indeterministic bottom-up assembly. These emerging technologies are not considered as a direct replacement for CMOS technology and may require a completely new architecture to achieve their functionality. Emerging Nanotechnologies: Test, Defect Tolerance and Reliability brings all of these issues together in one place for readers and researchers who are interested in this rapidly changing field.




Advanced Boolean Techniques


Book Description

This book describes recent findings in the domain of Boolean logic and Boolean algebra, covering application domains in circuit and system design, but also basic research in mathematics and theoretical computer science. Content includes invited chapters and a selection of the best papers presented at the 15th annual International Workshop on Boolean Problems.




Emerging Nanotechnologies for Manufacturing


Book Description

Nanotechnology is a technology on the verge of commercialization. In this important work, an unrivalled team of international experts provides an exploration of the emerging nanotechnologies that are poised to make the nano-revolution a reality in the manufacturing sector. From their different perspectives, the contributors explore how developments in nanotechnology are transforming areas as diverse as medicine, advanced materials, energy, electronics and agriculture. Key topics covered include: Characterization of nanostructures Bionanotechnology Nanoelectronics Micro- and nanomachining Self-assembly techniques New applications of carbon nanotubes Environmental and health impacts This book provides an important and in-depth guide to the applications and impact of nanotechnology to different manufacturing sectors. As such, it will find a broad readership, from R&D scientists and engineers to venture capitalists. About the Authors Waqar Ahmed is Chair of Nanotechnology & Advanced Manufacturing and the Director of the Institute of Advanced Manufacturing and Innovation at the University of Central Lancashire, UK. He has contributed to the wider industrial adoption of surface coating solutions through fundamental research and modeling of gas phase processes in CVD and studies of tribological behavior. Mark J. Jackson is a Professor at the Birck Nanotechnology Center and Center for Advanced Manufacturing, College of Technology at Purdue University. Dr Jackson is active in research work concerned with understanding the properties of materials in the field of microscale metal cutting, micro- and nanoabrasive machining, and laser micromachining. He is also involved in developing next generation manufacturing processes and biomedical engineering. Explains how to use biological pathways to produce nanoelectric devices Presents data on new, experimental designs Discusses the history of carbon nanotubes and how they are synthesized to fabricate novel nanostructures (incl. data on laser ablation) Extensive use of illustrations, tables, and figures throughout




Embedded Systems Design


Book Description

This extensive and increasing use of embedded systems and their integration in everyday products mark a significant evolution in information science and technology. Nowadays embedded systems design is subject to seamless integration with the physical and electronic environment while meeting requirements like reliability, availability, robustness, power consumption, cost, and deadlines. Thus, embedded systems design raises challenging problems for research, such as security, reliable and mobile services, large-scale heterogeneous distributed systems, adaptation, component-based development, and validation and tool-based certification. This book results from the ARTIST FP5 project funded by the European Commision. By integration 28 leading European research institutions with many top researchers in the area, this book assesses and strategically advances the state of the art in embedded systems. The coherently written monograph-like book is a valuable source of reference for researchers active in the field and serves well as an introduction to scientists and professionals interested in learning about embedded systems design.




Compilation Techniques for Reconfigurable Architectures


Book Description

The extreme ?exibility of recon?gurable architectures and their performance pot- tial have made them a vehicle of choice in a wide range of computing domains, from rapid circuit prototyping to high-performance computing. The increasing availab- ity of transistors on a die has allowed the emergence of recon?gurable architectures with a large number of computing resources and interconnection topologies. To - ploit the potential of these recon?gurable architectures, programmers are forced to map their applications, typically written in high-level imperative programming l- guages, such as C or MATLAB, to hardware-oriented languages such as VHDL or Verilog. In this process, they must assume the role of hardware designers and software programmers and navigate a maze of program transformations, mapping, and synthesis steps to produce ef?cient recon?gurable computing implementations. The richness and sophistication of any of these application mapping steps make the mapping of computations to these architectures an increasingly daunting process. It is thus widely believed that automatic compilation from high-level programming languages is the key to the success of recon?gurable computing. This book describes a wide range of code transformations and mapping te- niques for programs described in high-level programming languages, most - tably imperative languages, to recon?gurable architectures.