Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies


Book Description

There are continuous efforts focussed on improving road traffic safety worldwide. Numerous vehicle safety features have been invented and standardized over the past decades. Particularly interesting are the driver assistance systems, since these can considerably reduce the number of accidents by supporting drivers’ perception of their surroundings. Many driver assistance features rely on radar-based sensors. Nowadays the commercially available automotive front-end sensors are comprised of discrete components, thus making the radar modules highly-priced and suitable for integration only in premium class vehicles. Realization of low-cost radar fro- end circuits would enable their implementation in inexpensive economy cars, c- siderably contributing to traffic safety. Cost reduction requires high-level integration of the microwave front-end c- cuitry, specifically analog and digital circuit blocks co-located on a single chip. - cent developments of silicon-based technologies, e.g. CMOS and SiGe:C bipolar, make them suitable for realization of microwave sensors. Additionally, these te- nologies offer the necessary integration capability. However, the required output power and temperature stability, necessary for automotive radar sensor products, have not yet been achieved in standard digital CMOS technologies. On the other hand, SiGe bipolar technology offers excellent high-frequency characteristics and necessary output power for automotive applications, but has lower potential for - alization of digital blocks than CMOS.




Highly Integrated Low Power Radars


Book Description

In recent years, advances in radio detection and ranging technology, sustained by new achievements in the fields of signal processing and electronic components, have permitted the adoption of radars in many civil and defense applications. This resource discusses how highly integrated radar has been adopted by several new markets such as contactless vital sign monitoring (heart rate, breath rate) or harbour traffic control, as well as several applications for vehicle driver assistance. You are provided with scenarios, applications, and requirements, while focusing on the trade-offs between flexibility, programmability, power consumption, size and weight, and complexity.




5G and E-Band Communication Circuits in Deep-Scaled CMOS


Book Description

This book discusses design techniques, layout details and measurements of several key analog building blocks that currently limit the performance of 5G and E-Band transceivers implemented in deep-scaled CMOS. The authors present recent developments in low-noise quadrature VCOs and tunable inductor-less frequency dividers. Moreover, the design of low-loss broadband transformer-based filters that realize inter-stage matching, power division/combining and impedance transformation is discussed in great detail. The design and measurements of a low-noise amplifier, a downconverter and a highly-linear power amplifier that leverage the proposed techniques are shown. All the prototypes were realized in advanced nanometer scaled CMOS technologies without RF thick to metal option.




ISTFA 2017: Proceedings from the 43rd International Symposium for Testing and Failure Analysis


Book Description

The theme for the November 2017 conference was Striving for 100% Success Rate. Papers focus on the tools and techniques needed for maximizing the success rate in every aspect of the electronic device failure analysis process.




Mm-wave Circuit Design in 16nm FinFET for 6G Applications


Book Description

This book tackles the challenges of designing mm-wave circuits in 16nm FinFET, from the elementary transistor level to a measured D-band transmitter. The design of crucial building blocks such as oscillators and power amplifiers are covered through theoretical limitations, design methodology and measurement. Offers first book on design of mm-wave circuits above 100GHz in an advanced 16nm FinFET digital technology; Covers fundamentals of transistor layout, circuit implementation and measurements; Provides single-source reference to information otherwise only available in disparate literature.




High-Frequency Integrated Circuits


Book Description

A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.







Radio-Frequency Integrated-Circuit Engineering


Book Description

Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. * Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers * Blends analog and microwave engineering approaches for RFIC design at high frequencies * Includes problems at the end of each chapter




CMOS 60-GHz and E-band Power Amplifiers and Transmitters


Book Description

This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as “power transistor layout” and “4-way parallel-series power combiner”, that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.




Tactile Internet


Book Description

Tactile Internet with Human-in-the-Loop describes the change from the current Internet, which focuses on the democratization of information independent of location or time, to the Tactile Internet, which democratizes skills to promote equity that is independent of age, gender, sociocultural background or physical limitations. The book promotes the concept of the Tactile Internet for remote closed-loop human-machine interaction and describes the main challenges and key technologies. Current standardization activities in the field for IEEE and IETF are also described, making this book an ideal resource for researchers, graduate students, and industry R&D engineers in communications engineering, electronic engineering, and computer engineering. - Provides a comprehensive reference that addresses all aspects of the Tactile Internet – technologies, engineering challenges, use cases and standards - Written by leading researchers in the field - Presents current standardizations surrounding the IETF and the IEEE - Contains use cases that illustrate practical applications