Structural Design for Fire Safety


Book Description

Structural Design for Fire Safety, 2nd edition Andrew H. Buchanan, University of Canterbury, New Zealand Anthony K. Abu, University of Canterbury, New Zealand A practical and informative guide to structural fire engineering This book presents a comprehensive overview of structural fire engineering. An update on the first edition, the book describes new developments in the past ten years, including advanced calculation methods and computer programs. Further additions include: calculation methods for membrane action in floor slabs exposed to fires; a chapter on composite steel-concrete construction; and case studies of structural collapses. The book begins with an introduction to fire safety in buildings, from fire growth and development to the devastating effects of severe fires on large building structures. Methods of calculating fire severity and fire resistance are then described in detail, together with both simple and advanced methods for assessing and designing for structural fire safety in buildings constructed from structural steel, reinforced concrete, or structural timber. Structural Design for Fire Safety, 2nd edition bridges the information gap between fire safety engineers, structural engineers and building officials, and it will be useful for many others including architects, code writers, building designers, and firefighters. Key features: • Updated references to current research, as well as new end-of-chapter questions and worked examples. •Authors experienced in teaching, researching, and applying structural fire engineering in real buildings. • A focus on basic principles rather than specific building code requirements, for an international audience. An essential guide for structural engineers who wish to improve their understanding of buildings exposed to severe fires and an ideal textbook for introductory or advanced courses in structural fire engineering.




Fire Design of Steel Structures


Book Description

This book explains and illustrates the rules that are given in the Eurocodes for designing steel structures subjected to fire. After the first introductory chapter, Chapter 2 explains how to calculate the mechanical actions (loads) in the fire situation based on the information given in EN 1990 and EN 1991. Chapter 3 is dedicated to the models which represent the thermal actions created by the fire. Chapter 4 describes the procedures to be used to calculate the temperature of the steelwork from the temperature of the compartment and Chapter 5 shows how the information given in EN 1993-1-2 is used to determine the load bearing capacity of the steel structure. Chapter 6 presents the essential features that characterize the advanced calculation models, for thermal and mechanical response. The methods used to evaluate the fire resistance of bolted and welded connections are described in Chapter 7. Chapter 8 describes a computer program called `Elefir-EN? which is based on the simple calculation model given in the Eurocode and allows designers to quickly and accurately calculate the performance of steel components in the fire situation. Chapter 9 looks at the issues that a designer may be faced with when assessing the fire resistance of a complete building. This is done via a case study and addresses most of the concepts presented in the previous chapters. For this second edition the content has been revised and extended. The book contains some new sections, e.g. a comparison between the simple and the advanced calculation, as well as additional examples.




Fire Design of Steel Structures


Book Description

This book explains and illustrates the rules that are given in the Eurocode for designing steel structures subjected to fire. After the first introductory chapter, Chapter 2 explains how to calculate the mechanical actions (loads) in the fire situation based on the information given in EN 1990 and EN 1991. Chapter 3 presents the models to be used to represent the thermal action created by the fire. Chapter 4 describes the procedures to be used to calculate the temperature of the steelwork from the temperature of the compartment and Chapter 5 shows how the information given in EN 1993-1-2 is used to determine the loan bearing capacity of the steel structure. The methods use to evaluate the fire resistance of bolted and welded connections are described in Chapter 7. Chapter 8 describes a computer program called "Elefir-EN" which is based on the simple calculation model given in the Eurocode and allows designers to quickly and accurately calculate the performance of steel components in the fire situation. Chapter 9 looks at the issues that a designer may be faced with when assessing the fire resistance of a complete building. This is done via a case study and addresses most of the concepts presented in the earlier Chapters. The concepts and fire engineering procedures given in the Eurocodes may see complex those more familiar with the prescriptive approach. This publication sets out the design process in a logical manner giving practical and helpful advice and easy to follow worked examples that will allow designer to exploit the benefits of this new approach to fire design.




Performance-based Design of Structural Steel for Fire Conditions


Book Description

MOP 114 presents a new method developed to improve the design of structural steel for fire conditions.




Structural Fire Protection


Book Description

Provides a basis for developing new standards to calculate the fire resistance of structural members, mostly in buildings. Considers building codes and techniques of fire protection, the behavior of fire in enclosed spaces and its effect on various building materials, and methods for calculating fir




Fire Safety Engineering Design of Structures, Third Edition


Book Description

Designing structures to withstand the effects of fire is challenging, and requires a series of complex design decisions. This third edition of Fire Safety Engineering Design of Structures provides practising fire safety engineers with the tools to design structures to withstand fires. This text details standard industry design decisions, and offers expert design advice, with relevant historical data. It includes extensive data on materials’ behaviour and modeling -- concrete, steel, composite steel-concrete, timber, masonry, and aluminium. While weighted to the fire sections of the Eurocodes, this book also includes historical data to allow older structures to be assessed. It extensively covers fire damage investigation, and includes as far back as possible, the background to code methods to enable the engineer to better understand why certain procedures are adopted. What’s new in the Third Edition? An overview in the first chapter explains the types of design decisions required for optimum fire performance of a structure, and demonstrates the effect of temperature rise on structural performance of structural elements. It extends the sections on less common engineering materials. The section on computer modelling now includes material on coupled heat and mass transfer, enabling a better understanding of the phenomenon of spalling in concrete. It includes a series of worked examples, and provides an extensive reference section. Readers require a working knowledge of structural mechanics and methods of structural design at ambient conditions, and are helped by some understanding of thermodynamics of heat transfer. This book serves as a resource for engineers working in the field of fire safety, consultants who regularly carry out full fire safety design for structure, and researchers seeking background information. Dr John Purkiss is a chartered civil and structural engineer/consultant and former lecturer in structural engineering at Aston University, UK. Dr Long-Yuan Li is Professor of Structural Engineering at Plymouth University, UK, and a Fellow of the Institution of Structural Engineers.







Recent Advances in Structural Engineering, Volume 1


Book Description

This book is a collection of select papers presented at the Tenth Structural Engineering Convention 2016 (SEC-2016). It comprises plenary, invited, and contributory papers covering numerous applications from a wide spectrum of areas related to structural engineering. It presents contributions by academics, researchers, and practicing structural engineers addressing analysis and design of concrete and steel structures, computational structural mechanics, new building materials for sustainable construction, mitigation of structures against natural hazards, structural health monitoring, wind and earthquake engineering, vibration control and smart structures, condition assessment and performance evaluation, repair, rehabilitation and retrofit of structures. Also covering advances in construction techniques/ practices, behavior of structures under blast/impact loading, fatigue and fracture, composite materials and structures, and structures for non-conventional energy (wind and solar), it will serve as a valuable resource for researchers, students and practicing engineers alike.




Design Aids of Offshore Structures Under Special Environmental Loads including Fire Resistance


Book Description

This book provides detailed analysis methods and design guidelines for fire resistance, a vital consideration for offshore processing and production platforms. Recent advancements in the selection of various geometric structural forms for deep-water oil exploration and production require a detailed understanding of the design of offshore structures under special loads. Focusing on a relatively new aspect of offshore engineering, the book offers essential teaching material, illustrating and explaining the concepts discussed through many tutorials. It creates a basis for designing new courses for students of ocean engineering and naval architecture, civil engineering, and applied mechanics at both undergraduate and graduate levels. As such, its content can be used for self-study or as a text in structured courses and professional development programs.