Modern Engineering for Design of Liquid-propellant Rocket Engines


Book Description

From the component design to the subsystem design to the engine systems design, engine development, and flight-vehicle application, this how-to text bridges the gap between basic physical and design principles and actual rocket-engine design as its done in industry. More than 470 illustrations and tables help to make this book a must-read for advanced students and engineers active in all phases of engine systems design, development, and application in industry and in government agencies.







Fundamental Concepts of Liquid-Propellant Rocket Engines


Book Description

This book is intended for students and engineers who design and develop liquid-propellant rocket engines, offering them a guide to the theory and practice alike. It first presents the fundamental concepts (the generation of thrust, the gas flow through the combustion chamber and the nozzle, the liquid propellants used, and the combustion process) and then qualitatively and quantitatively describes the principal components involved (the combustion chamber, nozzle, feed systems, control systems, valves, propellant tanks, and interconnecting elements). The book includes extensive data on existing engines, typical values for design parameters, and worked-out examples of how the concepts discussed can be applied, helping readers integrate them in their own work. Detailed bibliographical references (including books, articles, and items from the “gray literature”) are provided at the end of each chapter, together with information on valuable resources that can be found online. Given its scope, the book will be of particular interest to undergraduate and graduate students of aerospace engineering.




History of Liquid Propellant Rocket Engines


Book Description

Liquid propellant rocket engines have propelled all the manned space flights, all the space vehicles flying to the planets or deep space, virtually all satellites, and the majority of medium range or intercontinental range ballistic missiles.




Fundamentals of Rocket Propulsion


Book Description

The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.




Liquid Rocket and Propellants


Book Description

Liquid Rocket and Propellants




Solid Rocket Propulsion Technology


Book Description

This book, a translation of the French title Technologie des Propergols Solides, offers otherwise unavailable information on the subject of solid propellants and their use in rocket propulsion. The fundamentals of rocket propulsion are developed in chapter one and detailed descriptions of concepts are covered in the following chapters. Specific design methods and the theoretical physics underlying them are presented, and finally the industrial production of the propellant itself is explained. The material used in the book has been collected from different countries, as the development of this field has occurred separately due to the classified nature of the subject. Thus the reader not only has an overall picture of solid rocket propulsion technology but a comprehensive view of its different developmental permutations worldwide.




Liquid Rocket Engine


Book Description

The great engineering achievement required to overcome most of the challenges and obstacles that prevented turning rocket design from art into science took place in Europe and the United States between the 1930s and the 1950s. With the vast majority of the engines currently in operation developed in the “pre-computer” age, there are new opportunities to update the design methodologies using technology that can now handle highly complex calculations fast. The space sector with an intense focus on efficiency is driving the need for updating, adapting or replacing the old modeling practices with new tools capable of reducing the volume of resources and the time required to complete simulations and analysis. This book presents an innovative parametric model applicable to the project of some elements of the liquid rocket thrust chamber with the level of detail and accuracy appropriate to the preliminary design phase. It addresses the operating characteristics and dimensioning of some thrust chamber elements through a set of equations and parameters, which include thrust or propellant characteristics. The model degree of sophistication was adjusted to the requirements of the Project Life Cycle Phase B, while also enabling quick analysis of new configurations from changes in initial project parameters.




Solid Propellant Rocket Research


Book Description

Solid Propellant Rocket Research