Design of Portal Frames Buildings


Book Description







Design of Portal Frame Buildings


Book Description




Advanced Analysis and Design of Steel Frames


Book Description

Steel frames are used in many commercial high-rise buildings, as well as industrial structures, such as ore mines and oilrigs. Enabling construction of ever lighter and safer structures, steel frames have become an important topic for engineers. This book, split into two parts covering advanced analysis and advanced design of steel frames, guides the reader from a broad array of frame elements through to advanced design methods such as deterministic, reliability, and system reliability design approaches. This book connects reliability evaluation of structural systems to advanced analysis of steel frames, and ensures that the steel frame design described is founded on system reliability. Important features of the this book include: fundamental equations governing the elastic and elasto-plastic equilibrium of beam, sheer-beam, column, joint-panel, and brace elements for steel frames; analysis of elastic buckling, elasto-plastic capacity and earthquake-excited behaviour of steel frames; background knowledge of more precise analysis and safer design of steel frames against gravity and wind, as well as key discussions on seismic analysis. theoretical treatments, followed by numerous examples and applications; a review of the evolution of structural design approaches, and reliability-based advanced analysis, followed by the methods and procedures for how to establish practical design formula. Advanced Design and Analysis of Steel Frames provides students, researchers, and engineers with an integrated examination of this core civil and structural engineering topic. The logical treatment of both advanced analysis followed by advanced design makes this an invaluable reference tool, comprising of reviews, methods, procedures, examples, and applications of steel frames in one complete volume.







Proceedings of the 7th International Conference on Architecture, Materials and Construction


Book Description

This book gathers the proceedings of the 7th International Conference on Architecture, Materials and Construction (ICAMC), held in Lisbon, Portugal on October 27-29, 2021. ICAMC serves as an international forum for the presentation of the latest technological advances and research results in the fields of architecture and urban planning, civil and structural engineering, and materials manufacturing and processing. As such, it explores highly diverse topics, including innovative construction technologies (computer and digital manufacturing) and materials (polymers, composites, etc.); traditional materials (glass, wood, steel, concrete, stone, brick, etc.) and its harmonic combination which can be achieved by evaluating their structural and non-structural properties; the key concepts of efficiency and sustainability related to the architectural design and engineering of new buildings; analysis, rehabilitation and restoration of buildings. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.




Design of Steel Structures


Book Description

This book is intended for classroom teaching in architectural and civil engineering at the graduate and undergraduate levels. Although it has been developed from lecture notes given in structural steel design, it can be useful to practicing engineers. Many of the examples presented in this book are drawn from the field of design of structures. Design of Steel Structures can be used for one or two semesters of three hours each on the undergraduate level. For a two-semester curriculum, Chapters 1 through 8 can be used during the first semester. Heavy emphasis should be placed on Chapters 1 through 5, giving the student a brief exposure to the consideration of wind and earthquakes in the design of buildings. With the new federal requirements vis a vis wind and earthquake hazards, it is beneficial to the student to have some under standing of the underlying concepts in this field. In addition to the class lectures, the instructor should require the student to submit a term project that includes the complete structural design of a multi-story building using standard design procedures as specified by AISC Specifications. Thus, the use of the AISC Steel Construction Manual is a must in teaching this course. In the second semester, Chapters 9 through 13 should be covered. At the undergraduate level, Chapters 11 through 13 should be used on a limited basis, leaving the student more time to concentrate on composite construction and built-up girders.