Design of Ultra-Low Power Impulse Radios


Book Description

This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead. This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs. Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.




Ultra-low-power UWB Impulse Radio Design


Book Description

Recent advances in home healthcare, environmental sensing, and low power computing have created a need for wireless communication at very low power for low data rate applications. Due to higher energy/bit requirements at lower data -rate, achieving power levels low enough to enable long battery lifetime (~10 years) or power-harvesting supplies have not been possible with traditional approaches. Dutycycled radios have often been proposed in literature as a solution for such applications due to their ability to shut off the static power consumption at low data rates. While earlier radio nodes for such systems have been proposed based on a type of sleepwake scheduling, such implementations are still power hungry due to large synchronization uncertainty (~1[MICRO SIGN]s). In this dissertation, we utilize impulsive signaling and a pulse-coupled oscillator (PCO) based synchronization scheme to facilitate a globally synchronized wireless network. We have modeled this network over a widely varying parameter space and found that it is capable of reducing system cost as well as providing scalability in wireless sensor networks. Based on this scheme, we implemented an FCC compliant, 3-5GHz, timemultiplexed, dual-band UWB impulse radio transceiver, measured to consume only 20[MICRO SIGN]W when the nodes are synchronized for peer-peer communication. At the system level the design was measured to consume 86[MICRO SIGN]W of power, while facilitating multi- hop communication. Simple pulse-shaping circuitry ensures spectral efficiency, FCC compliance and ~30dB band-isolation. Similarly, the band-switchable, ~2ns turn-on receiver implements a non-coherent pulse detection scheme that facilitates low power consumption with -87dBm sensitivity at 100Kbps. Once synchronized the nodes exchange information while duty-cycling, and can use any type of high level network protocols utilized in packet based communication. For robust network performance, a localized synchronization detection scheme based on relative timing and statistics of the PCO firing and the timing pulses ("sync") is reported. No active hand-shaking is required for nodes to detect synchronization. A self-reinforcement scheme also helps maintain synchronization even in the presence of miss-detections. Finally we discuss unique ways to exploit properties of pulse coupled oscillator networks to realize novel low power event communication, prioritization, localization and immediate neighborhood validation for low power wireless sensor applications.




Ultra-Low-Power Short-Range Radios


Book Description

This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. The authors describe leading-edge techniques to achieve ultra-low-power communication over short-range links. Many different applications are covered, ranging from body-area networks to transcutaneous implant communications and smart-appliance sensor networks. Various design techniques are explained to facilitate each of these applications.










Analysis and Design of Cmos Ultra-Wideband Impulse-Radio Transceiver


Book Description

The ultra-wideband (UWB) impulse-radio technology has unique features including high data-rate as well as low power consumption with ranging and localization capabilities. An UWB front-end, however, has to accommodate design challenges resulting from the exceptional wide bandwidth of several GHz. This book discusses the implementation issues of the UWB impulse-radio transceiver front-end, including the performance analysis of practical systems and the design of radio-frequency integrated circuits for transceiver front-ends. A general framework for performance evaluation of practical impulse radio system is proposed and demonstrated in scenarios of high-speed data communications as well as low-data-rate wireless body-area networks. An inductorless low- noise amplifier is designed with syncretic adoption of thermal noise canceling, capacitor peaking, and current reuse. The CMOS ransmit/receive switch design with highest reported bandwidth and power handling capability are discussed with customized transistor layout and triple-well resistive body- floating techniques. The prototypes have been demonstrated in state-of-the-art 130nm CMOS technology.




Design of Low Power Integrated Radios for Emerging Standards


Book Description

This book describes novel and disruptive architecture and circuit design techniques, toward the realization of low-power, standard-compliant radio architectures and silicon implementation of the circuits required for a variety of leading-edge applications. Readers will gain an understanding of the circuit level challenges that exist for low power radios, compatible with the IEEE 802.15.6 standard. The authors discuss current techniques to address some of these challenges, helping readers to understand the state-of-the-art, and to address the various, open research problems that exist with respect to realizing low power radios. Enables readers to face challenging bottleneck in low power radio design, with state-of-the-art, circuit-level design techniques; Provides readers with basic knowledge of circuits suitable for low power radio circuits compatible with the IEEE 802.15.6 standard; Discusses new and emerging architectures and circuit techniques, enabling applications such as body area networks and internet of things.




Ultra-Low Power FM-UWB Transceivers for IoT


Book Description

Over the past two decades we have witnessed the increasing popularity of the internet of things. The vision of billions of connected objects, able to interact with their environment, is the key driver directing the development of future communication devices. Today, power consumption as well as the cost and size of radios remain some of the key obstacles towards fulfilling this vision. Ultra-Low Power FM-UWB Transceivers for IoT presents the latest developments in the field of low power wireless communication. It promotes the FM-UWB modulation scheme as a candidate for short range communication in different IoT scenarios. The FM-UWB has the potential to provide exactly what is missing today. This spread spectrum technique enables significant reduction in transceiver complexity, making it smaller, cheaper and more energy efficient than most alternative options. The book provides an overview of both circuit-level and architectural techniques used in low power radio design, with a comprehensive study of state-of-the-art examples. It summarizes key theoretical aspects of FM-UWB with a glimpse at potential future research directions. Finally, it gives an insight into a full FM-UWB transceiver design, from system level specifications down to transistor level design, demonstrating the modern power reduction circuit techniques. Ultra-Low Power FM-UWB Transceivers for IoT is a perfect text and reference for engineers working in RF IC design and wireless communication, as well as academic staff and graduate students engaged in low power communication systems research.




Reflective Impulse Radios


Book Description

Emerging wireless sensor networks display a severe asymmetry between the up and down links. An alternative communication architecture, reflective impulse radio, is proposed to address such design challenges. It operates from the principles of passive transmission and pulse based modulation, readily used in radio frequency identification (RFID) and ultra wide-band (UWB) technologies respectively. By employing both schemes in conjunction however, it achieves ultra low power consumption and high data rate simultaneously. This dissertation begins by examining future wireless sensor applications and presenting the link asymmetry. The alternative architecture is then introduced and its operation principles explained. A step-by-step design procedure follows, accompanied by the implementation of a miniature biomedical implant transmitter as a design example. Potential challenges and mitigation techniques are also discussed. Key advantages of the proposed architecture include ultra low power consumption, simple circuitry (hence high reliability and low cost), and broad range of scalability. Measurement results of the biomedical example are subsequently presented, before a short conclusion is given in the end. While originated for wireless sensor networks, the proposed architecture can be applied to many other applications facing similar communication challenges.