Vapor-Liquid Equilibria Using Unifac


Book Description

Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method focuses on the UNIFAC group-contribution method used in predicting quantitative information on the phase equilibria during separation by estimating activity coefficients. Drawing on tested vapor-liquid equilibrium data on which UNIFAC is based, it demonstrates through examples how the method may be used in practical engineering design calculations. Divided into nine chapters, this volume begins with a discussion of vapor and liquid phase nonidealities and how they are calculated in terms of fugacity and activity coefficients, respectively. It then introduces the reader to the UNIFAC method and how it works, the procedure used in establishing the parameters needed for the model, prediction of binary and multicomponent vapor-liquid equilibria for a large number of systems, the potential of UNIFAC for predicting liquid-liquid equilibria, and how UNIFAC can be used to solve practical distillation design problems. This book will benefit process design engineers who want to reliably predict phase equilibria for designing distillation columns and other separation processes.




Distillation Design and Control Using Aspen Simulation


Book Description

A timely treatment of distillationcombining steady-state designand dynamic controllability As the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle. Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of this vital technology from the dual perspectives of steady-state design and dynamics. Where traditional design texts have focused mainly on the steady-state economic aspects of distillation design, William Luyben also addresses such issues as dynamic performance in the face of disturbances. Utilizing the commercial simulators Aspen Plus and Aspen Dynamics, the text guides future and practicing chemical engineers first in the development of optimal steady-state designs of distillation systems, and then in the development of effective control structures. Unique features of the text include: * In-depth coverage of the dynamics of column design to help develop effective control structures for distillation columns * Development of rigorous simulations of single distillation columns and sequences of columns * Coverage of design and control of petroleum fractionators Encompassing nearly four decades of research and practical developments in this dynamic field, the text represents an important reference for both students and experienced engineers faced with distillation problems.




Gas Extraction


Book Description

Application of compressed gases as solvents has found widespread interest within the scientific community. Its processes have industrial applications. Gas Extraction deals with the possibilities of supercritical gases as solvents for separation processes. The volume combines physico-chemical aspects with chemical engineering methods. The text generalizes as far as possible, and treats examples in detail. Gas Extraction covers, for the first time, the subject in textbook form. Most of the examples provide new results that will be helpful for practicing scientists, engineers, and students who want to make use of the techniques.







Thermodynamics Of Fluids: Measurement And Correlation


Book Description

This volume is a collection of papers, mostly state-of-the-art reviews, describing main topics of current research in Applied Thermodynamics. The papers deal with measurements of thermodynamic properties which are important for process design in chemical and related industries as well as for theoretical investigations of pure fluids and mixtures. Besides measuring techniques, methods are reviewed for the processing and correlation of experimental data.




Vapour–Liquid Equilibrium


Book Description

Vapor-Liquid Equilibrium, Second Edition covers the theoretical principles and methods of calculation of equilibrium conditions from various experimental data and the elements of measuring technique, as well as the instruments for the direct determination of the equilibrium compositions of the liquid and vapor phases of the system. The book discusses the relations necessary for the thermodynamic treatment of the equilibrium between the liquid and vapor phase of a system; the concept of an ideal solution and auxiliary thermodynamic functions; and the activity and the activity coefficient. The text also describes vapor-liquid equilibrium in real systems (electrolytes and non-electrolytes) and in systems whose components (i.e. temperature, pressure, and composition of phases) mutually react according to several stoichiometric equations. The criteria of purity of substances and the methods of measuring temperature; low, medium, and high pressures; the pressures of the saturated vapors at given temperatures; and the boiling points at given pressures used in laboratory work in the field of vapor-liquid equilibrium are considered. The book also tackles the methods for the direct determination of equilibrium data (distillation, circulation, static, dew and bubble point, and flow methods). The text concludes with a review of the literature on the systems whose vapor-liquid equilibrium data had been measured and reported to the beginning of 1954. Workers in the chemical industry who deal with problems of distillation and rectification will find the book useful.




International Thermodynamic Tables of the Fluid State


Book Description

International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove useful to physical chemists.




Chemical Thermodynamics for Process Simulation


Book Description

The only textbook that applies thermodynamics to real-world process engineering problems This must-read for advanced students and professionals alike is the first book to demonstrate how chemical thermodynamics work in the real world by applying them to actual engineering examples. It also discusses the advantages and disadvantages of the particular models and procedures, and explains the most important models that are applied in process industry. All the topics are illustrated with examples that are closely related to practical process simulation problems. At the end of each chapter, additional calculation examples are given to enable readers to extend their comprehension. Chemical Thermodynamics for Process Simulation instructs on the behavior of fluids for pure fluids, describing the main types of equations of state and their abilities. It discusses the various quantities of interest in process simulation, their correlation, and prediction in detail. Chapters look at the important terms for the description of the thermodynamics of mixtures; the most important models and routes for phase equilibrium calculation; models which are applicable to a wide variety of non-electrolyte systems; membrane processes; polymer thermodynamics; enthalpy of reaction; chemical equilibria, and more. -Explains thermodynamic fundamentals used in process simulation with solved examples -Includes new chapters about modern measurement techniques, retrograde condensation, and simultaneous description of chemical equilibrium -Comprises numerous solved examples, which simplify the understanding of the often complex calculation procedures, and discusses advantages and disadvantages of models and procedures -Includes estimation methods for thermophysical properties and phase equilibria thermodynamics of alternative separation processes -Supplemented with MathCAD-sheets and DDBST programs for readers to reproduce the examples Chemical Thermodynamics for Process Simulation is an ideal resource for those working in the fields of process development, process synthesis, or process optimization, and an excellent book for students in the engineering sciences.