Developing Graphics Frameworks with Python and OpenGL


Book Description

Developing Graphics Frameworks with Python and OpenGL shows you how to create software for rendering complete three-dimensional scenes. The authors explain the foundational theoretical concepts as well as the practical programming techniques that will enable you to create your own animated and interactive computer-generated worlds. You will learn how to combine the power of OpenGL, the most widely adopted cross-platform API for GPU programming, with the accessibility and versatility of the Python programming language. Topics you will explore include generating geometric shapes, transforming objects with matrices, applying image-based textures to surfaces, and lighting your scene. Advanced sections explain how to implement procedurally generated textures, postprocessing effects, and shadow mapping. In addition to the sophisticated graphics framework you will develop throughout this book, with the foundational knowledge you will gain, you will be able to adapt and extend the framework to achieve even more spectacular graphical results.




Developing Graphics Frameworks with Java and OpenGL


Book Description

Developing Graphics Frameworks with Java and OpenGL shows you how to create software for rendering complete three-dimensional (3D) scenes. The book explains the foundational theoretical concepts as well as the practical programming techniques that will enable you to create your own animated and interactive computer-generated worlds. You will learn how to combine the power of OpenGL, the most widely adopted cross-platform application programming interface (API) for graphics processing unit (GPU) programming, with the accessibility and versatility of the Java programming language. Topics in this book include generating geometric shapes, transforming objects with matrices, applying image-based textures to surfaces, and lighting a scene. Advanced sections explain how to implement procedurally generated textures, postprocessing effects, and shadow mapping. In addition to the sophisticated graphics framework discussed throughout the book, you will gain a foundational knowledge that will allow you to adapt and extend that framework, leading to even more spectacular graphical results. Author bios Lee Stemkoski is a professor of mathematics and computer science. He earned his Ph.D. in mathematics from Dartmouth College in 2006 and has been teaching at the college level since. His specialties are computer graphics, video game development, and virtual and augmented reality programming. James Cona is an up-and-coming software engineer who studied computer science at Adelphi University. Some of his specific interests include music, video game programming, 3D graphics, artificial intelligence, and clear and efficient software development in general.




Program Arcade Games


Book Description

Learn and use Python and PyGame to design and build cool arcade games. In Program Arcade Games: With Python and PyGame, Second Edition, Dr. Paul Vincent Craven teaches you how to create fun and simple quiz games; integrate and start using graphics; animate graphics; integrate and use game controllers; add sound and bit-mapped graphics; and build grid-based games. After reading and using this book, you'll be able to learn to program and build simple arcade game applications using one of today's most popular programming languages, Python. You can even deploy onto Steam and other Linux-based game systems as well as Android, one of today's most popular mobile and tablet platforms. You'll learn: How to create quiz games How to integrate and start using graphics How to animate graphics How to integrate and use game controllers How to add sound and bit-mapped graphics How to build grid-based games Audience“div>This book assumes no prior programming knowledge.




Computer Graphics from Scratch


Book Description

Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest.




Computer Graphics Programming in OpenGL with C++


Book Description

This new edition provides step-by-step instruction on modern 3D graphics shader programming in OpenGL with C++, along with its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES: Covers modern OpenGL 4.0+ shader programming in C++, with instructions for both PC/Windows and Macintosh Adds new chapters on simulating water, stereoscopy, and ray tracing Includes companion files with code, object models, figures, and more (also available for downloading by writing to the publisher) Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting, and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Explains how to optimize code for tools such as Nvidia’s Nsight debugger. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].




Python Graphics


Book Description

Use Python's built-in features to create innovative graphics for data visualization and technical illustrations. This book goes beyond simple commands and libraries to explain how to not only display but also rotate, shade, and edit graphics for any purpose. Starting with the essential Python functions to set up a plotting space and produce 2 and 3-dimensional objects, you'll learn how to construct more complex objects, translate and rotate them, remove hidden lines, introduce shading to add realism, and project images to visualize any dataset. The final chapter includes several worked applications in science and engineering including planetary models, which you can adapt for your own use. Written for developers who want to harness Python's capabilities to fine-tune their images, Python Graphics covers the different commands for plotting dots, lines, arrows, or arcs, creating custom plotting grids, correcting distortions, adding text and labels to illustrations, manipulating arcs and circles, specify and use colors, and more. Armed with these techniques and core math skills, you'll be ready to create and customize detailed technical illustrations or data visualizations. What You'll Learn Use Python′s built-in commands for plotting, removing distortions, and rotating objects Create and edit 2D and 3D objects Develop illustrations for scientific and engineering applications Who This Book Is For Python developers looking for tips on how to create illustrations and visualizations, as well as scientists, engineers, or students using Python. It assumes familiarity with vectors, matrices, geometry and trigonometry.




Michael Abrash's Graphics Programming Black Book


Book Description

No one has done more to conquer the performance limitations of the PC than Michael Abrash, a software engineer for Microsoft. His complete works are contained in this massive volume, including everything he has written about performance coding and real-time graphics. The CD-ROM contains the entire text in Adobe Acrobat 3.0 format, allowing fast searches for specific facts.




Python Multimedia


Book Description

A practical guide, this book provides step-by-step instructions for developing multimedia applications, showcasing real world examples throughout. This book is for Python developers who want to dip their toes into working with images, animations, audio and video processing using Python.




Real-Time Rendering


Book Description

Thoroughly revised, this third edition focuses on modern techniques used to generate synthetic three-dimensional images in a fraction of a second. With the advent of programmable shaders, a wide variety of new algorithms have arisen and evolved over the past few years. This edition discusses current, practical rendering methods used in games and other applications. It also presents a solid theoretical framework and relevant mathematics for the field of interactive computer graphics, all in an approachable style. The authors have made the figures used in the book available for download for fair use.:Download Figures. Reviews Rendering has been a required reference for professional graphics practitioners for nearly a decade. This latest edition is as relevant as ever, covering topics from essential mathematical foundations to advanced techniques used by today’s cutting edge games. -- Gabe Newell, President, Valve, May 2008 Rendering ... has been completely revised and revamped for its updated third edition, which focuses on modern techniques used to generate three-dimensional images in a fraction of the time old processes took. From practical rendering for games to math and details for better interactive applications, it's not to be missed. -- The Bookwatch, November 2008 You'll get brilliantly lucid explanations of concepts like vertex morphing and variance shadow mapping—as well as a new respect for the incredible craftsmanship that goes into today's PC games. -- Logan Decker, PC Gamer Magazine , February 2009




OpenGL Programming Guide


Book Description

Includes Complete Coverage of the OpenGL® Shading Language! Today’s OpenGL software interface enables programmers to produce extraordinarily high-quality computer-generated images and interactive applications using 2D and 3D objects, color images, and programmable shaders. OpenGL® Programming Guide: The Official Guide to Learning OpenGL®, Version 4.3, Eighth Edition, has been almost completely rewritten and provides definitive, comprehensive information on OpenGL and the OpenGL Shading Language. This edition of the best-selling “Red Book” describes the features through OpenGL version 4.3. It also includes updated information and techniques formerly covered in OpenGL® Shading Language (the “Orange Book”). For the first time, this guide completely integrates shader techniques, alongside classic, functioncentric techniques. Extensive new text and code are presented, demonstrating the latest in OpenGL programming techniques. OpenGL® Programming Guide, Eighth Edition, provides clear explanations of OpenGL functionality and techniques, including processing geometric objects with vertex, tessellation, and geometry shaders using geometric transformations and viewing matrices; working with pixels and texture maps through fragment shaders; and advanced data techniques using framebuffer objects and compute shaders. New OpenGL features covered in this edition include Best practices and sample code for taking full advantage of shaders and the entire shading pipeline (including geometry and tessellation shaders) Integration of general computation into the rendering pipeline via compute shaders Techniques for binding multiple shader programs at once during application execution Latest GLSL features for doing advanced shading techniques Additional new techniques for optimizing graphics program performance