Turbomachines


Book Description




Design of Radial Turbomachines


Book Description

During the past three decades advances have been made in the fluid dynamic and thermodynamic design and understanding of radial flow turbomachines. Radial turbomachines possess their own distinctive characteristics, and present the engineer with as full a range of complexities as any fluid flow problem. This book describes the current technology and design methods for centrifugal compressors and radial turbines working in compressible flow. These are of particular relevance to gas turbine engines, internal combustion engine turbochargers, process compressors and cryogenic expanders. The aerodynamic design of the turbomachine is preliminary design to the specification of blade forms and computational fluid dynamic analysis of vane and blade passage flows. The treatment throughout is modern, with full recognition of current computer-aided design methods. However throughout the book a clear separation is made between the fundamental gas dynamics and the empiricism necessary to close the gap between theory and practice in situations of such complexity. Computer program listings for preliminary design are included. The problems posed by specific applications are dealt with in details: for example, techniques for the suppression of surge in centrifugal compressors and a consequent widening of the operating range, and the problems of pulse operation of radial turbines as encountered in turbocharger applications. The book contains comprehensive surveys of the literature in all these fields.




Advanced Power Generation Systems


Book Description

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice




Axial and Radial Turbines


Book Description

Mechanical Engineering Design and Analysis of Axlal and Radial Turbines.




Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles


Book Description

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. - Represents the first book to focus exclusively on SC02 power cycles - Contains detailed coverage of cycle fundamentals, key components, and design challenges - Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion




MARE-WINT


Book Description

This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.




Nanotribology


Book Description

Nanotribology: Critical Assessment and Research Needs is an excellent reference for both academic and industrial researchers working in the fields of nanotechnology, tribology, mechanical engineering, materials science and engineering, MEMS, NEMS, magnetic recording, and biomedical devices. It will also be of interest to those pursuing scanning probe microscopy, nanoimaging, mesomanufacturing, sensors, actuators, aerospace, defense (controllers, microsystems), and military systems. Nanotribology: Critical Assessment and Research Needs provides a critical assessment of the current state of the art of nanotribology within the context of MEMS, mesomanufacturing, nanotechnology and microsystems. It contains chapters written by the leading experts in these fields. It identifies gaps in current knowledge and barriers to applications, and recommends research areas that need to be addressed to enable the rapid development of technologies.




Nuclear Safety in Light Water Reactors


Book Description

La 4e de couverture indique : Organizes and presents all the latest thought on LWR nuclear safety in one consolidated volume, provided by the top experts in the field, ensuring high-quality, credible and easily accessible information.




Turbulent Combustion


Book Description

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.




Fluid Machinery


Book Description

Fluid Machinery: Performance, Analysis, and Design provides a comprehensive introduction to the fluid mechanics of turbomachinery. By focusing on the preliminary design and selection of equipment to meet a set of performance specifications-including size, noise, and cost limitations-the author promotes a basic but thorough understanding of the subject. His pragmatic approach exposes students to a realistic array of conflicting requirements and real-world industrial applications, while providing a solid background for more advanced study. Coveriage of both gas and hydraulic turbines and emphasis on industrial issues and equipment makes this book ideal for mechanical engineering students. Fluid Machinery uses extensive illustration, examples, and exercises to prepare students to confront industrial applications with confidence.