Development of a Coherent Ultrafast Transmission Electron Microscope Based on a Laser-driven Cold Field Emission Source


Book Description

The investigation of the physics of nanoscale systems ideally requires atomic spatial resolution and femtosecond time-resolution. Ultrafast Transmission Electron Microscopy (UTEM) combining subpicosecond temporal resolution and nanometer spatial resolution has recently emerged as a unique tool with unprecedented spatio-temporal resolutions. However, the performances of the first UTEMs were limited by the brightness of the photocathodes used as ultrafast electron source. In this context, it was soon realized that UTEMs relying on laser-driven electron sources based on nanoscale emitters would overcome this limitation. The aim of this thesis is to report the development of an ultrafast Transmission Electron Microscope based on a cold field emission source, which can operate either in DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses, which are tightly focused by optical components integrated inside a cold-field emission source close to the cathode. The measured brightness is the largest reported so far for UTEMs. Combining this new high brightness source with an injection/Cathodoluminescence system, composed of a parabolic mirror placed above the sample holder, the UTEM can be used to perform time-resolved ultrafast pump-probe TEM experiments. The possibilities of such an instrument for ultrafast imaging, diffraction, electron holography and spectroscopy are presented. Particular attention has been paid on applications in nano-optics. In particular, Electron Energy Gain Spectroscopy (EEGS) allows to investigate the optical excitations of nanosystems in the energy domain. The ability to easily synchronize ultrashort free electron pulses with the optical excitation of the sample in UTEMs is essential for the observation of strongly nonlinear electron/photon interactions. These experiments will enable us to characterize the spectro-temporal properties of the ultrashort electron beam. Off-axis electron holography performed with ultrafast electron pulses are finally discussed. The electron dose in the specimen plane is considerably reduced due to the low repetition rate of the electron pulse train. This peculiar property of ultrafast FE-TEMs implies that ultrafast holograms are acquired in low-dose-like conditions. As a consequence, the experimental parameters commonly used for the acquisition of off-axis electron holograms with conventional TEMs cannot be directly implemented in the ultrafast mode. Experimental studies were performed to find the optimum conditions for ultrafast off-axis electron holography. Influence of the dose, the coherence length of the source, the illumination condition and the instrument instabilities have been addressed.




Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources


Book Description

Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources, Volume 227 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. Chapters in this new release cover Characterization of nanomaterials properties using FE-TEM, Cold field-emission electron sources: From higher brightness to ultrafast beams, Every electron counts: Towards the development of aberration optimized and aberration corrected electron sources, and more. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Imaging and Electron Physics series




Advances in Imaging and Electron Physics


Book Description

Advances in Imaging and Electron Physics, Volume 207, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Contains contributions from leading authorities on the subject matter Informs and updates on the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electrons and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing




Springer Handbook of Microscopy


Book Description

This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.




Development and Characterization of an Electron Gun for Ultrafast Electron Microscopy


Book Description

Ultrafast electron microscopy is an emerging field of research offering the potential to investigate structural processes on a femtosecond time-scale with nanometer resolution. In order to further advance ultrafast electron microscopes, an improvement of the electron gun is necessary with respect to spatial and temporal beam properties as well as the electron yield. In this thesis, photoemission characteristics of laser-driven nanotip cathodes incorporated into a Schottky-type emitter assembly are experimentally and theoretically investigated. Specifically, electron trajectories, emission p...




Electron Microscopy


Book Description

TEM and SEM have contributed greatly to the progress of various research fields, which has been accelerated in the last few decades by highly functional electron microscopes and microscopy. In this tide of microscopy, various microscopic methods have been developed to make clear many unsolved problems, e.g. pulse beam TEM, environmental microscopy, correlative microscopy, etc. In this book, a number of reviews have been collected concerning these subjects. We think that the content in each chapter is impressive, and we hope this book will contribute to future advances in electron microscopy, materials science, and biomedicine.




Ultrafast Science Opportunities with Electron Microscopy


Book Description

X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world's first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.







Transmission Electron Microscopy


Book Description

This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.




Transmission Electron Microscopy


Book Description

Hier steht der Extremkurztext.