Development of a Phase Stability-based Fuel Condensation Model for Advanced Low Temperature Combustion Engines


Book Description

Ever-more stringent legislative regulations on harmful emissions and fuel efficiency have driven researchers to develop cleaner and more efficient internal combustion engines. Research studies have shown that low temperature combustion can produce very low NOx and soot emissions while obtaining diesel-like high thermal efficiency. One strategy is reactivity controlled compression ignition (RCCI) combustion, which has been shown to be more practical and applicable than homogeneous charge compression ignition (HCCI) by providing extra controllability on the combustion processes, including for the combustion phasing and duration. However, recent experimental work has shown that more than 95% of the particulate matter from RCCI combustion consists of organic species, which is drastically different from conventional diesel combustion (CDC), which mainly produces carbonaceous soot. This distinctive character is believed to be related to condensation processes of large hydrocarbon species that cannot stably exist in the gas phase. Rather, under certain conditions the heavy gaseous species can condense and they become responsible for the organic fraction of the particulate matter. To investigate this physical phenomenon, a thermodynamically consistent, robust and efficient phase equilibrium solver, which performs rigorous phase stability tests and phase splitting calculations with advanced numerical algorithms, was developed. This is a first step forward modeling condensation processes in engines. Potential phase separation and combination are considered using Gibbs free energy minimization and entropy maximization. The numerical solver was well validated on a number of mixtures in two- and three-phase equilibria with available data. It was also applied to study the complex phase behavior of mixtures, including multiphase dynamic flash calculations, supercritical fluid behavior, condensation and evaporation, PVT analysis and critical point behavior. In addition, the developed model was coupled with an open-source CFD code, KIVA, widely used for multi-dimensional engine spray and combustion simulations, thus enabling a consistent treatment of both the fluid dynamics and thermodynamics. The model was used to investigate a number of two-phase flow problems, including regular condensation in a nozzle, retrograde condensation in a shock tube, condensation processes during supercritical fuel injection, and condensation in an engine combustion chamber. The simulations were validated using available experiments for both pure species and mixtures, ranging from subcritical to supercritical flows. The thermodynamic equilibrium analysis was also applied to study engine fuel condensation processes under non-reacting conditions. First, simulations were performed for Sandia optical combustion vessels and engines with direct injection of a diesel jet into a pure nitrogen environment. Consistent with experiments, the simulations show that condensation of previously evaporated fuel takes place during the expansion stroke. For high-pressure fuel injection of an n-alkane fuel, there are local sub-critical conditions under which phase separation can take place. This is because of the significant reduction of the mixture temperature caused by vaporization and cooling of the cold liquid fuel. Therefore, even though the ambient conditions during injection are supercritical relative to the fuel, the actual mixture temperature can be much lower so that the mixture enters into the two-phase region. The phase equilibrium model was finally applied to study fuel condensation processes in a RCCI combustion engine. Condensation was predicted during the late stages of the expansion stroke, when the continuous expansion sends the local fluid into the two-phase region again. The condensed fuel is shown to affect emission predictions, including engine-out particulate matter and unburned hydrocarbons. Consistent with experiments, the organic fraction mass from the condensed fuel is predicted to be the majority (more than 99%) of the total particulate matter. Also, as the engine operation changes from low to high load, fuel condensation is significantly reduced due to the higher temperatures and pressures, and the engine-out PM is predicted to be mainly composed of solid carbonaceous soot particles.







Chemical Kinetic Models for HCCI and Diesel Combustion


Book Description

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.




Development of Advanced High Temperature In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines, Phase 1


Book Description

Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption. Kroeger, C. A. and Larson, H. J. Unspecified Center...







Introduction to Modeling and Control of Internal Combustion Engine Systems


Book Description

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.




Two-Phase Flow for Automotive and Power Generation Sectors


Book Description

This book focuses on the two-phase flow problems relevant in the automotive and power generation sectors. It includes fundamental studies on liquid–gas two-phase interactions, nucleate and film boiling, condensation, cavitation, suspension flows as well as the latest developments in the field of two-phase problems pertaining to power generation systems. It also discusses the latest analytical, numerical and experimental techniques for investigating the role of two-phase flows in performance analysis of devices like combustion engines, gas turbines, nuclear reactors and fuel cells. The wide scope of applications of this topic makes this book of interest to researchers and professionals alike.




Fossil Energy Update


Book Description