Volume 7. Issue No. 1 LTRM


Book Description




The Impact of Red Light Cameras (automated Enforcement) on Safety in Arizona


Book Description

Red Light Cameras (RLCs) have been used in a number of U.S. cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, "spillover" effects caused by drivers reacting to non-RLC-equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be randomly selected, and as a result may suffer from the regression to the mean effect. Finally, crash severity needs to be considered to fully understand the safety impacts of RLCs. With these challenges in mind this study was designed to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the state of Arizona and to identify which factors are associated with successful installations. RLC equipped intersections in the cities of Phoenix and Scottsdale are examined in detail to draw conclusions as to the relative success of RLC programs in these two jurisdictions. Both jurisdictions are operating successful installations of RLCs. Factors related to RLC effectiveness appear to include crash type and severity, left-turn phasing, presence of warning signs, approach speeds, and signal timing. Recommendations are made as to under what conditions should RLCs be considered.




In-service Evaluation of a Detection-control System for High-speed Signalized Intersections


Book Description

Traffic engineers are often faced with operational and safety challenges at rural, high-speed signalized intersections. Vehicle-actuated control, combined with multiple advance detectors, is often used to improve operations and safety. However, this type of detection and control has not always resulted in a significant number of crashes. Crashes sometimes continue to occur at high-speed intersections, and delays to traffic movements can be unnecessarily long. An innovative detection-control system was developed for the Texas Department of Transportation to minimize both delay and crash frequency at rural intersections. This system was subsequently implemented at several intersections in Texas and its safety and operational benefits were evaluated. This report documents the findings and conclusions reached as a result of a three-year implementation project. The Detection-Control System was installed at each of eight intersections in Texas during the three-year period. Five of the intersections were suitable for a before-after study of safety and operational data. An evaluation of the before-after data indicated that the Detection-Control System was able to reduce delay by 14 percent, stop frequency by 9 percent, red-light violations by 58 percent, heavy-vehicle red-light violations by 80 percent, and severe crash frequency by 39 percent.




Human Factors Guidelines for Road Systems


Book Description

"This report completes and updates the first edition of NCHRP Report 600: Human Factors Guidelines for Road Systems (HFG), which was published previously in three collections. The HFG contains guidelines that provide human factors principles and findings for consideration by, and is a resource document for, highway designers, traffic engineers, and other safety practitioners."--Foreword.




Report


Book Description




Roundabouts


Book Description

TRB's National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide - Second Edition explores the planning, design, construction, maintenance, and operation of roundabouts. The report also addresses issues that may be useful in helping to explain the trade-offs associated with roundabouts. This report updates the U.S. Federal Highway Administration's Roundabouts: An Informational Guide, based on experience gained in the United States since that guide was published in 2000.




Traffic Signal Timing Manual


Book Description

This report serves as a comprehensive guide to traffic signal timing and documents the tasks completed in association with its development. The focus of this document is on traffic signal control principles, practices, and procedures. It describes the relationship between traffic signal timing and transportation policy and addresses maintenance and operations of traffic signals. It represents a synthesis of traffic signal timing concepts and their application and focuses on the use of detection, related timing parameters, and resulting effects to users at the intersection. It discusses advanced topics briefly to raise awareness related to their use and application. The purpose of the Signal Timing Manual is to provide direction and guidance to managers, supervisors, and practitioners based on sound practice to proactively and comprehensively improve signal timing. The outcome of properly training staff and proactively operating and maintaining traffic signals is signal timing that reduces congestion and fuel consumption ultimately improving our quality of life and the air we breathe. This manual provides an easy-to-use concise, practical and modular guide on signal timing. The elements of signal timing from policy and funding considerations to timing plan development, assessment, and maintenance are covered in the manual. The manual is the culmination of research into practices across North America and serves as a reference for a range of practitioners, from those involved in the day to day management, operation and maintenance of traffic signals to those that plan, design, operate and maintain these systems.




Guidelines for Timing Yellow and All-red Intervals at Signalized Intersections


Book Description

TRB National Cooperative Highway Research Program (NCHRP) Report 731: Guidelines for Timing Yellow and All-Red Intervals at Signalized Intersections offers guidance for yellow change and all-red clearance intervals at signalized intersections. The guidelines provide a framework that can be easily applied by state and local transportation agencies.




Traffic Engineering Handbook


Book Description

Get a complete look into modern traffic engineering solutions Traffic Engineering Handbook, Seventh Edition is a newly revised text that builds upon the reputation as the go-to source of essential traffic engineering solutions that this book has maintained for the past 70 years. The updated content reflects changes in key industry standards, and shines a spotlight on the needs of all users, the design of context-sensitive roadways, and the development of more sustainable transportation solutions. Additionally, this resource features a new organizational structure that promotes a more functionally-driven, multimodal approach to planning, designing, and implementing transportation solutions. A branch of civil engineering, traffic engineering concerns the safe and efficient movement of people and goods along roadways. Traffic flow, road geometry, sidewalks, crosswalks, cycle facilities, shared lane markings, traffic signs, traffic lights, and moreā€”all of these elements must be considered when designing public and private sector transportation solutions. Explore the fundamental concepts of traffic engineering as they relate to operation, design, and management Access updated content that reflects changes in key industry-leading resources, such as the Highway Capacity Manual (HCM), Manual on Uniform Traffic Control Devices (MUTCD), AASSHTO Policy on Geometric Design, Highway Safety Manual (HSM), and Americans with Disabilities Act Understand the current state of the traffic engineering field Leverage revised information that homes in on the key topics most relevant to traffic engineering in today's world, such as context-sensitive roadways and sustainable transportation solutions Traffic Engineering Handbook, Seventh Edition is an essential text for public and private sector transportation practitioners, transportation decision makers, public officials, and even upper-level undergraduate and graduate students who are studying transportation engineering.