Tumor Immunology and Immunotherapy - Cellular Methods Part B


Book Description

Tumor Immunology and Immunotherapy - Cellular Methods Part B, Volume 632, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered include Quantitation of calreticulin exposure associated with immunogenic cell death, Side-by-side comparisons of flow cytometry and immunohistochemistry for detection of calreticulin exposure in the course of immunogenic cell death, Quantitative determination of phagocytosis by bone marrow-derived dendritic cells via imaging flow cytometry, Cytofluorometric assessment of dendritic cell-mediated uptake of cancer cell apoptotic bodies, Methods to assess DC-dependent priming of T cell responses by dying cells, and more.




Enzyme Activity in Single Cells


Book Description

Enzyme Activity in Single Cells, Volume 628, the latest release in the Methods of Enzymology series, discusses groundbreaking cellular physiology research that is taking place in the biological sciences. Chapters in this new release cover Spatial and temporal resolution of caspase waves in single Xenopus eggs during apoptosis, Spatial and temporal organization of metabolic complexes in cells, Measuring cellular efflux and biomolecular delivery: synthetic approaches to imaging and engineering cells, Slide-based, single-cell enzyme assays, Single-cell assays using integrated continuous-flow microfluidics, High-throughput screening of single-cell lysates, Microfluidic capture of single cells for drug resistance assays, and much more.




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Next Steps for Functional Genomics


Book Description

One of the holy grails in biology is the ability to predict functional characteristics from an organism's genetic sequence. Despite decades of research since the first sequencing of an organism in 1995, scientists still do not understand exactly how the information in genes is converted into an organism's phenotype, its physical characteristics. Functional genomics attempts to make use of the vast wealth of data from "-omics" screens and projects to describe gene and protein functions and interactions. A February 2020 workshop was held to determine research needs to advance the field of functional genomics over the next 10-20 years. Speakers and participants discussed goals, strategies, and technical needs to allow functional genomics to contribute to the advancement of basic knowledge and its applications that would benefit society. This publication summarizes the presentations and discussions from the workshop.




Computational Methods for Single-Cell Data Analysis


Book Description

This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.




Encyclopedia of Bioinformatics and Computational Biology


Book Description

Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases




A Tale of Three Next Generation Sequencing Platforms


Book Description

Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support. Proceeds from the sale of this book go to the support of an elderly disabled person.




Mobile DNA: Finding Treasure in Junk


Book Description

Annotation What we now know about mobile DNA--and the substantial roles it plays in humans, animals, and plants. & bull; & bull;Mobile DNA accounts for more than half of our genome: This book explains the important role it plays in shaping evolutionary change. & bull;A rich, thorough, and accessible introduction for all serious students, practitioners, and researchers in human and medical genetics, molecular biology, or evolutionary biology. & bull;By one of the field's leading researchers, Dr. Haig Kazazian. This book thoroughly reviews our current scientific understanding of the significant role that mobile genetic elements play in the evolution and function of genomes and organisms--from plants and animals to humans. Highly regarded geneticist Haig Kazazian offers an accessible intellectual history of the field's research strategies and concerns, explaining how advances opened up new questions, and how new tools and capabilities have encouraged progress in the field. Kazazian introduces the key strategies and approaches taken in leading laboratories (including his own) to gain greater insight into the large proportion of our genome that derives from mobile genetic elements, including viruses, plasmids, and transposons. He also presents intriguing insights into long-term research strategies that may lead to an even deeper understanding.




Single Cell Methods


Book Description

This volume provides a comprehensive overview for investigating biology at the level of individual cells. Chapters are organized into eight parts detailing a single-cell lab, single cell DNA-seq, RNA-seq, single cell proteomic and epigenetic, single cell multi-omics, single cell screening, and single cell live imaging. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Single Cell Methods: Sequencing and Proteomics aims to make each experiment easily reproducible in every lab.




Biosensors for Single-Cell Analysis


Book Description

Biosensors for Single-Cell Analysis explores a wide range of biosensor technologies and their applications in single-cell characterization and analysis. Sections cover key biophysical and chemical single-cell properties that consider proteomic, metabolic, electrical, mechanical and optical properties. Each chapter features key definitions and case studies, providing detailed guidance for researchers who want to replicate covered solutions in their work. Tutorial sections, evaluations of the current state-of-the-field and future developments are also included. Microfluidic approaches to characterization, such as microfluidic impedance flow cytometry and microfluidic flow cytometry are considered alongside more conventional approaches, such as mass spectroscopy, fluorescent and mass flow cytometry. Additionally, key types of biosensors are covered, including atomic force microscopy, micropipette aspiration, optical tweezers, microfluidic hydrodynamic stretchers, microfluidic constriction channel and microfluidic optical stretchers. - Includes chapters focused on key single-cell properties, such as proteomic, metabolic and mechanical characterization - Features case studies that illustrate the application of biosensors for single-cell analysis - Considers microfluidic approaches for each single-cell property discussed - Explores future directions for single-cell analysis and biosensor technology