Development of New Nanostructurally Engineered Polymer Semiconductors for Organic Electronics


Book Description

The research presented in this thesis was focused on organic semiconductors and has resulted in the development of novel printable polymer semiconductors that can be used in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs), or solar cells. Polymers used in OTFT applications must have particular characteristics, such as a highly ordered or crystalline structure, favoured molecular orientation, and appropriate energy levels for either hole transport (p-type semiconductors) or electron transport (n-type semiconductors). Achieving these properties requires control of the design and synthesis of the polymers through the choice of appropriate building blocks and side chain substituents. In contrast, for OPV applications, the band gap, thin film morphology, and balance of the donor's hole mobility and the acceptor's electron mobility must be finely tuned for optimal photovoltaic performance. The specific focus of the research was on a new type of donor-acceptor copolymers that have alternating electron-accepting azo units and common electron donor units (e.g., thiophene). These polymers are expected to have strong intermolecular interactions due to the donor-acceptor effect, which could lead to improved molecular organization for efficient charge carrier transport in OTFT devices. The donor-acceptor effect also creates narrow band gap polymers, which are preferred for optimum light harvesting. The polymer materials developed in this research are evaluated as channel semiconductors in OTFTs and can also be used as donors in polymer solar cells. Zs discovery of which complemented previous work conducted by the same research group. These innovative building blocks would be valuable in numerous applications, including OTFTs and OPVs. Five polymers have been created, three of which show the most promising potential for OTFT and OPV applications: P1-DTA-BTV, P5-DTAE-BT, and P6-DTAE-TT. All of these copolymers have been synthesized via Stille coupling reaction. The first copolymer, P1-DTA-BTV, which exhibits a small band gap of 1.13 eV, with HOMO and LUMO energy levels of -5.21 eV and - 4.08 eV, respectively, is suitable for both OTFT devices and OPV applications. P5-DTAE-BT and P6-DTAE-TT, on the other hand, are characterized by broader band gaps of 1.29 eV and 1.32 eV, respectively, and their average HOMO and LUMO energy levels are -5.43 eV, -4.20 eV, and -5.40 eV, -4.00 eV, respectively. It has been experimentally demonstrated that the presence of an ester group in the (E)-1,2-di(thiazol-2-yl)diazene DTA monomer helps lower the LUMO energy level, creating the broad band gap revealed in the (E)-bis(2-octyldodecyl) 2,2'-(diazene-1,2-diyl)bis(thiazole-4-carboxylate) DTAE copolymer results, and making the P5-DTAE-BT D-A copolymer an n-type semiconductor, which is very useful for the applications mentioned above. The polymers were characterized by Differential Scanning Calorimetry DSC, Thermal Gravimetric Analysis TGA, Ultraviolet-Visible Spectrometry UV-Vis, Cyclic Voltammetry CV, Atomic Force Microscopy AFM, X-Ray Diffraction XRD.




Development of New Building Blocks for Constructing Novel Polymer Semiconductors for Organic Thin Film Transistors


Book Description

Organic semiconductors are envisioned to have widespread applications in flexible displays, radio-frequency identification (RFID) tags, bio- and chem-sensors, as well as organic solar cells. Polymer semiconductors are particularly suitable for the low-cost manufacture of organic electronics using printing techniques due to their excellent solution processability and mechanical properties. This work focuses on the development of two novel building blocks, IBDF and DTA, which can be used for the construction of high performance organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Two copolymers, P6-IBDF-T and P5-IBDF-T, and a homopolymer P6-IBDF were prepared using the IBDF building block. Copolymer P6-IBDF-T has been prepared via the Stille-coupling polymerization. This polymer exhibits a small band gap of 1.36 eV with HOMO/LUMO energy level of -5.69 eV/-4.43 eV. P6-IBDF-T showed stable electron transport performance in encapsulated thin film transistors and ambipolar transport performance in non-encapsulated TFTs. Balanced hole/electron mobilities of up to 8.2 ×10-3/1.0 ×10-2 cm2V-1s-1 was achieved in bottom-contact, bottom-gate organic thin film transistors. In addition, the broad absorption of the polymer over the UV-Vis range suggested that this polymer is suitable for applications in solar cells. The effect of conjugation on mobility and UV-vis spectra of the polymer was studied by comparing P5-IBDF-T with P6-IBDF-T. The ideal of indirect electron transition was proposed to explain the difference between UV-Vis light absorption spectra for these two polymers. DTA building block was used to construct four D-A copolymers, namely PDTA-T, PDTA-BT, PDAT-BTV, and PDTA-TT. These polymers were characterized by UV-Vis, CV, DSC, TGA, AFM and XRD. Device performance was also investigated on OTFTs. The device performance of DTA based polymer increased as the area of electron donor increase from T in PDTA-T to BTV in PDTA-BTV. PDTA-BTV exhibits hole mobility of 1.3×10-3 cm2 V-1 s-1 with Ion/Ioff value of ~103-4 in bottom-contact, bottom-gate organic thin film transistors. All DTA based copolymers exhibited small optical bandgaps (1.18 - 1.27 eV) and required none or moderate thermal treatment during fabrication process. These make them promising candidates for cost-effective OPV applications.




Conjugated Polymers for Organic Electronics


Book Description

Covers the chemistry and physics of conjugated polymers, and how they can be designed and optimised for various electronic applications.




Molecular Engineering of Polymer Semiconductors for Electronics and Photonics


Book Description

There has been tremendous progress in the development of conjugated polymer semiconductors in the last two decades for diverse applications in organic electronics and photonics. Most notably, advances in p-type (hole-conducting) polymers have enabled the development of high-performance organic field-effect transistors (OFETs) as well as more efficient fullerene-based organic photovoltaics (OPVs). In contrast, n-type (electron-conducting) polymer semiconductors remain relatively scarce and consequently the performance of n-channel OFETs and all-polymer solar cells has lagged far behind p-channel OFETs and fullerene-based OPVs. This dissertation mainly focuses on the design and synthesis of new n-type polymer semiconductors for device applications in n-channel OFETs and non-fullerene OPVs. It aims to achieve better understanding of the relationships between molecular structure, processing, morphology, and device performance. New n-type polymer semiconductors were developed based on strong electron withdrawing naphthalene diimide (NDI) building block with various selenophene derivatives as co-monomers. The resulting highly crystalline poly(naphthalene diimide)s (PNDIs) gave the electron mobility as high as 0.24 cm2/Vs in n-channel OFET measurements in air which is comparable or even higher mobility compared to most of the p-channel transistors. Using NDI-selenophene copolymer, PNDIS-HD, as acceptor, a photovoltaic performance with a power conversion efficiency (PCE) of 3.3 % (Jsc = 7.78 mA/cm2, Voc = 0.76 V, FF = 0.55) was achieved in all-polymer solar cells, and this work has stimulated a lot of current interest in fullerene-free OPVs. In further studies in all-polymer solar cells, highly enhanced photovoltaic performance was achieved by chemical modifications of acceptor polymers and controlling self-organization kinetics of polymer/polymer blend films. From these studies, a critical role of the bulk crystallinity of acceptor polymer was revealed, and provided an important criterion for the molecular design of high performance polymer acceptors. Furthermore, all-polymer solar cells with more favorable bulk morphology by slow self-organization of polymers facilitated by room temperature film aging resulted in enhanced charge carrier mobility and photocurrent. Resulting all-polymer solar cells with PCE over 7 % showed a great potential of non-fullerene solar cells and demonstrated for the first time a viable alternative pathway to organic photovoltaics.




Conjugated Polymer Design and Engineering for Organic Electronics


Book Description

The molecular structure of a conjugated polymer critically impacts its physical and optoelectronic properties, thus determining its ultimate performance in organic electronic devices. In this work, new polymers and derivatives are designed, synthesized, characterized, and tested in photovoltaic devices. Through device engineering and nanoscale characterization, general structure-function relationships are established to aid the design of the next-generation of high performance polymer semiconductors for organic electronic applications. Using a prototypical conjugated polymer, the influence of backbone regioregularity is examined and found to highly impact polymer crystallinity, solid state morphology and device stability. The investigation of alternative aromatic units in the backbone also led to new understandings in polymer processability and the development of promising materials for organic photovoltaics. Besides the backbone structure, the side chain choice of the polymer can significantly affect material properties and device performance as well. In fact, the side chain substitution can influence both the optoelectronic properties and the physical properties of the polymer. A sterically bulky side chain can be used to tune the donor/acceptor separation distance, which in turn determines the charge separation efficiency. The addition of a polar side group increases the dielectric constant of a polymer and improves overall charge separation. Choosing the appropriate solubilizing group can also induce solid state packing of the polymer and considerably enhance device efficiency. Finally, the influence of post-fabrication processing techniques on the crystallinity and charge transport properties of a polymer is highlighted.







Investigating the Nucleation, Growth, and Energy Levels of Organic Semiconductors for High Performance Plastic Electronics


Book Description

This thesis details the significant progress made in improving the performance of organic transistors and the network conductivity of carbon nanotubes. The first section investigates organic semiconductor nucleation and growth on the most common dielectric surface used to fabricate organic thin film transistors. The nucleation and growth of the semiconductor was determined to be a critical factor affecting the device performance. Excellent dielectric modification layers, which promote desirable semiconductor growth leading to high conductivity were identified, and a technologically relevant deposition technique was developed to fabricate high quality dielectric modification layers over large areas. This may represent an important step towards the realization of large area organic circuity. In the final section, lessons learned from studying organic semiconductor nucleation and growth were utilized to improve the conductivity of carbon nanotube networks. Selective nucleation of materials at the junctions between nanotubes in the network significantly decreased the network's sheet resistance. The resulting networks may be promising candidates for transparent electrodes with a variety of optoelectronic applications.




Organic Radical Polymers


Book Description

This book provides a detailed introduction to organic radical polymers and open-shell macromolecules. Functional macromolecules have led to marked increases in a wide range of technologies, and one of the fastest growing of these fields is that of organic electronic materials and devices. To date, synthetic and organic electronic device efforts have focused almost exclusively on closed-shell polymers despite the promise of open-shell macromolecules in myriad applications. This text represents the first comprehensive review of the design, synthesis, characterization, and device applications of open-shell polymers. In particular, it will summarize the impressive synthetic and device performance efforts that have been achieved with respect to energy storage, energy conversion, magnetic, and spintronic applications. By combining comprehensive reviews with a wealth of informative figures, the text provides the reader with a complete “molecules-to-modules” understanding of the state of the art in open-shell macromolecules. Moreover, the monograph highlights future directions for open-shell polymers in order to allow the reader to be part of the community that continues to build the field. In this way, the reader will gain a rapid understanding of the field and will have a clear pathway to utilize these materials in next-generation applications.




Conjugated Polymers at Nanoscale


Book Description

Nanoscale control of order and orientation is essential for optimizing the performance of conjugated polymers. These semi-crystalline materials enable flexible devices for electronic, optical, electrochemical, and thermoelectric applications and are also of interest for the emerging fields of bioelectronics and spintronics.




Nanostructured Materials and Their Applications


Book Description

This book gives an overview of nanostructures and nanomaterials applied in the fields of energy and organic electronics. It combines the knowledge from advanced deposition and processing methods of nanomaterials such as laser-based growth and nanopatterning and state-of-the-art characterization techniques with special emphasis on the optical, electrical, morphological, surface and mechanical properties. Furthermore it contains theoretical and experimental aspects for different types of nanomaterials such as nanoparticles, nanotubes and thin films for organic electronics applications. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. The authors take an interdisciplinary approach of physics, chemistry, engineering, materials science and nanotechnology. It appeals to researchers and graduate students.