Papers Presented at the ... Meeting


Book Description




Functional Properties of Bio-inspired Surfaces


Book Description

This review volume explores how the current knowledge of the biological structures occuring on the surface of moth eyes, leaves, sharkskin, and the feet of reptiles can be transferred to functional technological materials.




Evolution of Thin Film Morphology


Book Description

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Advances in Antimicrobial Coatings


Book Description

This book is motivated by our passion to compile recent research on antimicrobial surfaces. We aimed to assemble research papers on the preparation of new materials, antimicrobial testing using different pathogens (bacteria, fungi, and viruses), and the relationship between the coating nanostructure and its reactivity towards the studied pathogen(s). We believe that a good antimicrobial coating should by characterized by (i) a fast activity towards the pathogen, (ii) sustainable activity based on the stability of the coating, and (iii) the lowest possible toxicity for humans and reduced risks for the environment. Striking a compromise between these different challenges is difficult and requires more research.




Biomimetic Polymers


Book Description

The term biomimetic is comparatively new on the chemical scene, but the concept has been utilized by chemists for many years. Furthermore, the basic idea of making a synthetic material that can imitate the func tions of natural materials probably could be traced back into antiquity. From the dawn of creation, people have probably attempted to duplicate or modify the activities of the natural world. (One can even find allusions to these attempts in the Bible; e. g. , Genesis 30. ) The term "mimetic" means to imitate or mimic. The word "mimic" means to copy closely, or to imitate accurately. Biomimetic, which has not yet entered most dictionaries, means to imitate or mimic some specific bio logical function. Usually, the objective of biomimetics is to form some useful material without the need of utilizing living systems. In a simi lar manner, the term biomimetic polymers means creating synthetic poly mers which imitate the activity of natural bioactive polymers. This is a major advance in polymer chemistry because the natural bioactive polymers are the basis of life itself. Thus, biomimetic polymers imitate the life process in many ways. This present volume delineates some of the recent progress being made in this vast field of biomimetic polymers. Chemists have been making biomimetic polymers for more than fifty years, although this term wasn't used in the early investigations.




Kirk-Othmer Concise Encyclopedia of Chemical Technology, 2 Volume Set


Book Description

This is an easily-accessible two-volume encyclopedia summarizing all the articles in the main volumes Kirk-Othmer Encyclopedia of Chemical Technology, Fifth Edition organized alphabetically. Written by prominent scholars from industry, academia, and research institutions, the Encyclopedia presents a wide scope of articles on chemical substances, properties, manufacturing, and uses; on industrial processes, unit operations in chemical engineering; and on fundamentals and scientific subjects related to the field.




Coatings for Biomedical Applications


Book Description

The biomaterials sector is rapidly expanding and significant advances have been made in the technology of biomedical coatings and materials, which provide a means to improve the wear of joints, change the biological interaction between implant and host and combine the properties of various materials to improve device performance. Coatings for biomedical applications provides an extensive review of coating types and surface modifications for biomedical applications.The first part of the book explores a range of coating types and their biomedical applications. Chapters look at hydrophilic, mineral and pyrolytic carbon coatings in and ex vivo orthopaedic applications and finally at surface modification and preparation techniques. Part two presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices.With its clear structure and comprehensive review of research, Coatings for biomedical applications is a valuable resource to researchers, scientists and engineers in the biomedical industry. It will also benefit anyone studying or working within the biomedical sector, particularly those specialising in biomedical coatings. - Provides an extensive review of coating types and surface modifications for biomedical applications - Chapters look at hydrophilic coatings for biomedical applications in and ex vivo, mineral coatings for orthopaedic applications, pyrolytic carbon coating and other commonly-used biomedical coatings - Presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices




Methods for Film Synthesis and Coating Procedures


Book Description

In recent years, thin layer technologies, including fabrication of different micro- and nano-structures, have undergone tremendous progress. Such layers are made for a variety of industrial and scientific applications. Due to the extreme physico-chemical properties of the available structures, there are many promising applications (eg, due to biocompatibility, biological and medical applications between living tissues and materials). Pre-tailored special surface layers/structures could be realized for implants in dental, neurological and orthopedic applications. There are also different methods that have been applied to produce special mono and multilayers with extreme electrical end magnetic properties. Also some methods have been developed to produce surface structure applications eg, for environmental applications with necessary resistivity and anti-corrosion properties.Some theoretical/mathematical simulation methods have also been developed for better compatibility of theory with experiments.This book consists of 10 chapters describing the physico-chemical base of deposition and coating microfabrication, thus providing some overview on how to measure the physical and chemical parameters of fabricated structures and how to solve compatibility and fitting problems, etc.