Thermophilic Bacteria


Book Description

Thermophilic Bacteria is a comprehensive volume that describes all major bacterial groups that can grow above 60-65°C (excluding the Archaea). Over 60 different species of aerobic and anaerobic thermophilic bacteria are covered. Isolation, growth methods, characterization and identification, ecology, metabolism, and enzymology of thermophilic bacteria are examined in detail, and an extensive compilation of recent biotechnological applications and the properties of many thermostable enzymes are also included. Major topics discussed in the book include a general review on thermophilic bacteria and archaea; heterotropic bacilli; the genus Thermus; new and rare genera of aerobic heterophophs, such as Saccharococcus, Rhodothermus, and Scotohermus; aerobic chemolithoautotrophic thermophilic bacteria; obligately anaerobic thermophilic bacteria; and hyperthermophilic Thermotogales and thermophilic phototrophs. Extensive bibliographies are also provided for each chapter. The vast amount of information packed into this one volume makes it essential for all microbiologists, biochemists, molecular biologists, and students interested in the expanding field of thermophilicity. Biotechnologists will find the book useful as a source of information on thermophiles or thermostable enzymes of possible industrial use.




Microbial Extremozymes


Book Description

Microbial Extremozymes: Novel Sources and Industrial Applications is a unique resource of practical research information on the latest novel sources and technologies regarding extremozymes in bioremediation, waste management, valorization of industrial by-products, biotransformation of natural polymers, nutrition, food safety and diagnosis of disease. The book's broad knowledge and varying applications are useful to the food industry, dairy industry, fruit and vegetable processing, and baking and beverages industries, as well as the pharmaceutical and biomedical industries. This is a concise, all-encompassing resource for a range of scientists needing knowledge of extremozymes to enhance and research. Furthermore, it provides an updated knowledge of microbial enzymes isolated from extreme environments (temperatures, etc.) and their biotechnological applications. It will be useful to researchers, scientists and students in enzyme research. In addition, users from the dairy and baking industries will benefit from the presented content. - Explores recent scientific research on extremophiles and extremozymes technologies that help innovate novel ideas - Provides innovative technologies for enzyme production from extremophilic microbes - Includes cutting-edge research for applications in various industries where extreme temperature conditions exist - Presents novel microorganisms and their enzymes from extreme environments (Thermophilic, Psychrophilic, Acidophilic, Alkaliphilic, Anaerobic, Halophilic, Barophilic, Metallotolerant, Radioresistant, etc.)




Developments and Applications of Enzymes From Thermophilic Microorganisms


Book Description

Developments and Applications of Enzymes from Thermophilic Microorganisms extensively presents the industrial application of thermophilic/hyperthermophilic enzymes. The book brings thorough and in-depth coverage on the role of these enzymes in a broad range of industries, focusing on present scenarios of these enzymes in biofuel industries, including recent advancements. The use of thermophilic enzymes in 2G biorefineries may enable the whole production process to take place at high temperatures, allowing increased reaction rate and reduced costs. Researchers in biochemistry, microbiology, microbial technology, biotechnology, molecular biology and bioresource technology will benefit from the new insights given on potential applications of hyperthermophiles. Hyperthermophilic enzymes, many of which survive at temperatures at or above 100C, contain novel macromolecules and metabolic systems which represent a vast resource for fundamental molecular and physiological studies, and for potential exploitation in biotechnology. - Covers the role of thermophilic/hyperthermophilic enzymes in a broad range of industries - Explains the Importance of thermophilic/hyperthermophilic enzymes in biorefineries using examples of lignocellulose and starch conversions to desired products - Discusses the existing and potential applications of thermophiles/hyperthermophilic enzymes




Thermophilic Microorganisms


Book Description

Thermophilic microorganisms thrive in a variety of marine and terrestrial habitats. These organisms have evolved several biochemical and molecular strategies to counteract the deleterious effects of the high temperatures in their environments. In this book, leading scientists highlight the current progress in the most topical areas of research providing a timely overview of the field. The authors discuss current technical challenges and future development trends.--




Thermophilic Microbes in Environmental and Industrial Biotechnology


Book Description

The existence of life at high temperatures is quiet fascinating. At elevated temperatures, only microorganisms are capable of growth and survival. Many thermophilic microbial genera have been isolated from man-made (washing machines, factory effluents, waste streams and acid mine effluents) and natural (volcanic areas, geothermal areas, terrestrial hot springs, submarine hydrothermal vents, geothermally heated oil reserves and oil wells, sun-heated litter and soils/sediments) thermal habitats throughout the world. Both culture-dependent and culture-independent approaches have been employed for understanding the diversity of microbes in hot environments. Interest in their diversity, ecology, and physiology has increased enormously during the past few decades as indicated by the deliberations in international conferences on extremophiles and thermophiles held every alternate year and papers published in journals such as Extremophiles. Thermophilic moulds and bacteria have been extensively studied in plant biomass bioconversion processes as sources of industrial enzymes and as gene donors. In the development of third generation biofuels such as bioethanol, thermophilic fungal and bacterial enzymes are of particular interest. The book is aimed at bringing together scattered up-to-date information on various aspects of thermophiles such as the diversity of thermophiles and viruses of thermophiles, their potential roles in pollution control and bioremediation, and composting.




Physiological and Biotechnological Aspects of Extremophiles


Book Description

Physiological and Biotechnological Aspects of Extremophiles highlights the current and topical areas of research in this rapidly growing field. Expert authors from around the world provide the latest insights into the mechanisms of these fascinating organisms use to survive.The vast majority of extremophiles are microbes which include archaea, bacteria and some eukaryotes. These microbes live under chemical and physical extremes that are usually lethal to cellular molecules, yet they manage to survive and even thrive. Extremophiles have important practical uses. They are a valuable source of industrially important enzymes and recent research has revealed novel mechanisms and biomolecular structures with a broad range of potential applications in biotechnology, biomining, and bioremediation.Aimed at research scientists, students, microbiologists, and biotechnologists, this book is an essential reading for scientists working with extremophiles and a recommended reference text for anyone interested in the microbiology, bioprospecting, biomining, biofuels, and extremozymes of these organisms. - Shows the implications of the physiological adaptations of microbes from extreme habitats that are largely contributed by their biomolecules from basic to applied research - Provides in-depth knowledge of genomic plasticity and proteome of different extremophiles - Gives detailed and comprehensive insight about use of genetic engineering as well as genome editing for industrial applications




Environmental and Agricultural Microbiology


Book Description

Environmental and Agricultural Microbiology Uniquely reveals the state-of-the-art microbial research/advances in the environment and agriculture fields Environmental and Agricultural Microbiology: Applications for Sustainability is divided into two parts which embody chapters on sustenance and life cycles of microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production, and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on the behavior of microorganisms in the environmental and agricultural realm. Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors, and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters, facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next-generation crop improvement strategies via rhizosphere microbiome, production and implementation of liquid biofertilizers, mitigation of methane from livestock, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities, and their environmental importance, have all been comprehensively elaborated. In the era of sustainable energy production, biofuel and other bioenergy products play a key role, and their production from microbial sources are frontiers for researchers. The final chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology Audience The book will be read by environmental microbiologists, biotechnologists, chemical and agricultural engineers.




Enzymes from Extreme Environments


Book Description

Enzymes are nature’s biocatalysts empowered with high catalytic power and remarkable substrate specificity. Enzymes perform a wide range of functions throughout nature, and guide the biochemistry of life with great precision. The majority of enzymes perform under conditions considered normal for mesophilic, neutrophilic, terrestrial microorganisms. However, the Earth’s biosphere contains several regions that are extreme in comparison, such as hypersaline lakes and pools, hydrothermal vents, cold oceans, dry deserts and areas exposed to intensive radiation. These areas are inhabited by a large number of extremophilic microorganisms which produce enzymes capable of functioning in unusual conditions. There is an increasing biotechnological and industrial demand for enzymes stable and functioning in harsh conditions, and over the past decade screening for, isolation and production of enzymes with unique and extreme properties has become one of the foremost areas of biotechnology research. The development of advanced molecular biology tools has facilitated the quest for production of enzymes with optimized and extreme features. These tools include large-scale screening for potential genes using metagenomics, engineering of enzymes using computational techniques and site-directed mutagenesis and molecular evolution techniques. The goal of this Research Topic is to present reports on latest advances in enzymes from all types of extreme environments. Contributions dealing with isolation of enzymes from extremophilic microorganisms or directly from natural environments, screening for and expression of enzymes with extreme properties using metagenomic approaches are welcome. In addition, contributions dealing with all forms of biocatalyst production and improvement are welcome, such as fermentation technology, protein engineering, directed evolution, rational design, and immobilization techniques.




Bioprocessing for Biomolecules Production


Book Description

Presents the many recent innovations and advancements in the field of biotechnological processes This book tackles the challenges and potential of biotechnological processes for the production of new industrial ingredients, bioactive compounds, biopolymers, energy sources, and compounds with commercial/industrial and economic interest by performing an interface between the developments achieved in the recent worldwide research and its many challenges to the upscale process until the adoption of commercial as well as industrial scale. Bioprocessing for Biomolecules Production examines the current status of the use and limitation of biotechnology in different industrial sectors, prospects for development combined with advances in technology and investment, and intellectual and technical production around worldwide research. It also covers new regulatory bodies, laws and regulations, and more. Chapters look at biological and biotechnological processes in the food, pharmaceutical, and biofuel industries; research and production of microbial PUFAs; organic acids and their potential for industry; second and third generation biofuels; the fermentative production of beta-glucan; and extremophiles for hydrolytic enzymes productions. The book also looks at bioethanol production from fruit and vegetable wastes; bioprocessing of cassava stem to bioethanol using soaking in aqueous ammonia pretreatment; bioprospecting of microbes for bio-hydrogen production; and more. Provides up to date information about the advancements made on the production of important biotechnological ingredients Complete visualization of the general developments of world research around diverse products and ingredients of technological, economic, commercial and social importance Investigates the use and recovery of agro-industrial wastes in biotechnological processes Includes the latest updates from regulatory bodies for commercialization feasibility Offering new products and techniques for the industrial development and diversification of commercial products, Bioprocessing for Biomolecules Production is an important book for graduate students, professionals, and researchers involved in food technology, biotechnology; microbiology, bioengineering, biochemistry, and enzymology.




Physiology, Genomics, and Biotechnological Applications of Extremophiles


Book Description

Extremophiles are organisms that are able to live in extreme conditions due to their unique physiological and genetic adaptations. Extremophiles are harnessed for their extremozymes that have wide applications in biotechnology, pharmaceutics, and industry. Recent developments in genomics and proteomics have helped unravel the mechanism of survival, physiological adaptation, and genomics structure of extremophiles. Physiology, Genomics, and Biotechnological Applications of Extremophiles covers innovative developments in understanding the physiology and biochemistry of extremophiles using the -omics perspective, focuses on the advancement in mechanisms of the extremophiles that makes them able to survive under extreme conditions, and discusses the applications of extremophiles in astrobiology. Covering topics such as genomics and the history and identification of extremophiles, it is ideal for students, professors, researchers, academicians, microbiologists, agricultural scientists, and biotechnologists.