Diagnostics and Prognostics of Engineering Systems: Methods and Techniques


Book Description

Industrial Prognostics predicts an industrial system’s lifespan using probability measurements to determine the way a machine operates. Prognostics are essential in determining being able to predict and stop failures before they occur. Therefore the development of dependable prognostic procedures for engineering systems is important to increase the system’s performance and reliability. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques provides widespread coverage and discussions on the methods and techniques of diagnosis and prognosis systems. Including practical examples to display the method’s effectiveness in real-world applications as well as the latest trends and research, this reference source aims to introduce fundamental theory and practice for system diagnosis and prognosis.




Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems


Book Description

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers - mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more Gives numerical and simulation results in each chapter to reflect engineering practices




Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems


Book Description

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more Gives numerical and simulation results in each chapter to reflect engineering practices




Prognostics and Health Management of Engineering Systems


Book Description

This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.




Intelligent Fault Diagnosis and Prognosis for Engineering Systems


Book Description

Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic




Machine Learning and Knowledge Discovery for Engineering Systems Health Management


Book Description

This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.




Intelligent Prognostics for Engineering Systems with Machine Learning Techniques


Book Description

The text discusses the latest data-driven, physics-based, and hybrid approaches employed in each stage of industrial prognostics and reliability estimation. It will be a useful text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, electrical engineering, and computer science. The book Discusses basic as well as advance research in the field of prognostics Explores integration of data collection, fault detection, degradation modeling and reliability prediction in one volume Covers prognostics and health management (PHM) of engineering systems Discusses latest approaches in the field of prognostics based on machine learning The text deals with tools and techniques used to predict/ extrapolate/ forecast the process behavior, based on current health state assessment and future operating conditions with the help of Machine learning. It will serve as a useful reference text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, manufacturing science, electrical engineering, and computer science.




Fault Detection and Diagnosis in Engineering Systems


Book Description

Featuring a model-based approach to fault detection and diagnosis in engineering systems, this book contains up-to-date, practical information on preventing product deterioration, performance degradation and major machinery damage.;College or university bookstores may order five or more copies at a special student price. Price is available upon request.




Intelligent Prognostics for Engineering Systems with Machine Learning Techniques


Book Description

The text discusses the latest data-driven, physics-based, and hybrid approaches employed in each stage of industrial prognostics and reliability estimation. It will be a useful text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, electrical engineering, and computer science. The book Discusses basic as well as advance research in the field of prognostics. Explores integration of data collection, fault detection, degradation modeling and reliability prediction in one volume. Covers prognostics and health management (PHM) of engineering systems. Discusses latest approaches in the field of prognostics based on machine learning. The text deals with tools and techniques used to predict/ extrapolate/ forecast the process behavior, based on current health state assessment and future operating conditions with the help of Machine learning. It will serve as a useful reference text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, manufacturing science, electrical engineering, and computer science.




Bayesian Network Analysis for Diagnostics and Prognostics of Engineering Systems


Book Description

Bayesian networks have been applied to many different domains to perform prognostics, reduce risk and ultimately improve decision making. However, these methods have not been applied to military field and human performance data sets in an industrial environment. Methods frequently rely on a clear understanding of causal connections leading to an undesirable event and detailed understanding of the system behavior. Methods may also require large amount of analyst teams and domain experts, coupled with manual data cleansing and classification. The research performed utilized machine learning algorithms (such as Bayesian networks) and two existing data sets. The primary objective of the research was to develop a diagnostic and prognostic tool utilizing Bayesian networks that does not require the need for detailed causal understanding of the underlying system. The research yielded a predictive method with substantial benefits over reactive methods. The research indicated Bayesian networks can be trained and utilized to predict failure of several important components to include potential malfunction codes and downtime on a real-world Navy data set. The research also considered potential error within the training data set. The results provided credence to utilization of Bayesian networks in real field data – which will always contain error that is not easily quantified. Research should be replicated with additional field data sets from other aircraft. Future research should be conducted to solicit and incorporate domain expertise into subsequent models. Research should also consider incorporation of text based analytics for text fields, which was considered out of scope for this research project.