Diagonalizing Quadratic Bosonic Operators by Non-Autonomous Flow Equations


Book Description

The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocket-Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.




Rohlin Flows on von Neumann Algebras


Book Description

The authors will classify Rohlin flows on von Neumann algebras up to strong cocycle conjugacy. This result provides alternative approaches to some preceding results such as Kawahigashi's classification of flows on the injective type II1 factor, the classification of injective type III factors due to Connes, Krieger and Haagerup and the non-fullness of type III0 factors. Several concrete examples are also studied.




Semicrossed Products of Operator Algebras by Semigroups


Book Description

The authors examine the semicrossed products of a semigroup action by -endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.




Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces


Book Description

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. The authors establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given Lp space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.







Real Non-Abelian Mixed Hodge Structures for Quasi-Projective Varieties: Formality and Splitting


Book Description

The author defines and constructs mixed Hodge structures on real schematic homotopy types of complex quasi-projective varieties, giving mixed Hodge structures on their homotopy groups and pro-algebraic fundamental groups. The author also shows that these split on tensoring with the ring R[x] equipped with the Hodge filtration given by powers of (x−i), giving new results even for simply connected varieties. The mixed Hodge structures can thus be recovered from the Gysin spectral sequence of cohomology groups of local systems, together with the monodromy action at the Archimedean place. As the basepoint varies, these structures all become real variations of mixed Hodge structure.




Igusa's $p$-Adic Local Zeta Function and the Monodromy Conjecture for Non-Degenerate Surface Singularities


Book Description

In 2011 Lemahieu and Van Proeyen proved the Monodromy Conjecture for the local topological zeta function of a non-degenerate surface singularity. The authors start from their work and obtain the same result for Igusa's p-adic and the motivic zeta function. In the p-adic case, this is, for a polynomial f∈Z[x,y,z] satisfying f(0,0,0)=0 and non-degenerate with respect to its Newton polyhedron, we show that every pole of the local p-adic zeta function of f induces an eigenvalue of the local monodromy of f at some point of f−1(0)⊂C3 close to the origin. Essentially the entire paper is dedicated to proving that, for f as above, certain candidate poles of Igusa's p-adic zeta function of f, arising from so-called B1-facets of the Newton polyhedron of f, are actually not poles. This turns out to be much harder than in the topological setting. The combinatorial proof is preceded by a study of the integral points in three-dimensional fundamental parallelepipeds. Together with the work of Lemahieu and Van Proeyen, this main result leads to the Monodromy Conjecture for the p-adic and motivic zeta function of a non-degenerate surface singularity.




An Inverse Spectral Problem Related to the Geng-Xue Two-Component Peakon Equation


Book Description

The authors solve a spectral and an inverse spectral problem arising in the computation of peakon solutions to the two-component PDE derived by Geng and Xue as a generalization of the Novikov and Degasperis-Procesi equations. Like the spectral problems for those equations, this one is of a "discrete cubic string" type, but presents some interesting novel features.




Proof of the 1-Factorization and Hamilton Decomposition Conjectures


Book Description

In this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D≥2⌈n/4⌉−1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, χ′(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D≥⌊n/2⌋. Then every D-regular graph G on n vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices with minimum degree δ≥n/2. Then G contains at least regeven(n,δ)/2≥(n−2)/8 edge-disjoint Hamilton cycles. Here regeven(n,δ) denotes the degree of the largest even-regular spanning subgraph one can guarantee in a graph on n vertices with minimum degree δ. (i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case δ=⌈n/2⌉ of (iii) answer questions of Nash-Williams from 1970. All of the above bounds are best possible.




The $abc$-Problem for Gabor Systems


Book Description

A longstanding problem in Gabor theory is to identify time-frequency shifting lattices aZ×bZ and ideal window functions χI on intervals I of length c such that {e−2πinbtχI(t−ma): (m,n)∈Z×Z} are Gabor frames for the space of all square-integrable functions on the real line. In this paper, the authors create a time-domain approach for Gabor frames, introduce novel techniques involving invariant sets of non-contractive and non-measure-preserving transformations on the line, and provide a complete answer to the above abc-problem for Gabor systems.