Dielectrics for Nanosystems II


Book Description

This issue covers papers relating to advanced semiconductor products that are true representatives of nanoelectics and that have reached below 100nm. Depending on the application, the nanosystem may consist of one or more of the following types of functional components: electronic, optical, magnetic, mechanical, biological, chemical, energy source, and various types of sensing devices. As long as one or more of these fuctional devices is in the 1-100nm dimensions, the resultant system can be defined as a nanosystem. Papers will be in all areas of dielectric issues in nanosystems. In addtional to traditional areas of semiconductor processing and packaging of nanoelectronics, emphasis will be placed on areas where multifunctional device integration (through innovation in design, materials, and processing at the device and system levels) will lead to new applications of nanosystems.







Dielectrics in Nanosystems -and- Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications 3


Book Description

This issue of ECS Transactions will cover the following topics in (a) Graphene Material Properties, Preparation, Synthesis and Growth; (b) Metrology and Characterization of Graphene; (c) Graphene Devices and Integration; (d) Graphene Transport and mobility enhancement; (e) Thermal Behavior of Graphene and Graphene Based Devices; (f) Ge & III-V devices for CMOS mobility enhancement; (g) III.V Heterostructures on Si substrates; (h) Nano-wires devices and modeling; (i) Simulation of devices based on Ge, III-V, nano-wires and Graphene; (j) Nanotechnology applications in information technology, biotechnology and renewable energy (k) Beyond CMOS device structures and properties of semiconductor nano-devices such as nanowires; (l) Nanosystem fabrication and processing; (m) nanostructures in chemical and biological sensing system for healthcare and security; and (n) Characterization of nanosystems; (f) Nanosystem modeling.







Dielectrics for Nanosystems


Book Description




Dielectrics for Nanosystems 3: Materials Science, Processing, Reliability, and Manufacturing


Book Description

This issue covers papers relating to advanced semiconductor products that are true representatives of nanoelectronics have reached below 100 nm. Depending on the application, the nanosystem may consist of one or more of the following types of functional components: electronic, optical, magnetic, mechanical, biological, chemical, energy sources, and various types of sensing devices. As long as one or more of these functional devices is in 1-100 nm dimensions, the resultant system can be defined as nanosystem. Papers will be in all areas of dielectric issues in nanosystems. In addition to traditional areas of semiconductor processing and packaging of nanoelectronics, emphasis will be placed on areas where multifunctional device integration (through innovation in design, materials, and processing at the device and system levels) will lead to new applications of nanosystems.




Micro Nano Devices, Structure and Computing Systems II


Book Description

Selected, peer reviewed papers from the 2013 2nd International Conference on Micro Nano Devices, Structure and Computing Systems (MNDSCS 2013), January 23-24, 2013, Shenzhen, China




Nanostructured Materials and Nanotechnology II


Book Description

A collection of papers from The American Ceramic Society s 32nd International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 27-February 1, 2008. Topics include basic and applied research in nanomaterials such as synthesis, functionalization, processing, and characterization; structure-property correlations; bio- and magnetic nanomaterials; nanostructured materials for chemical mechanical planarization, display, health, and cosmetic applications; nanotubes and nanowires; and industrial development.




CRC Concise Encyclopedia of Nanotechnology


Book Description

The CRC Concise Encyclopedia of Nanotechnology sets the standard against which all other references of this nature are measured. As such, it is a major resource for both skilled professionals and novices to nanotechnology.The book examines the design, application, and utilization of devices, techniques, and technologies critical to research at the




Advanced Materials and Nano Systems: Theory and Experiment - Part 2


Book Description

The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind.Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update students, teachers, and scientists by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 12 topics in these areas: - Recent advancements in nanotechnology: a human health Perspective. - An exploratory study on characteristics of SWIRL of AlGaAs/GaAs in advanced bio based nanotechnological systems. - Electronic structure of the half-Heusler ScAuSn, LuAuSn and their superlattice. - Recent trends in nanosystems. - Improvement of performance of single and multicrystalline silicon solar cell using low-temperature surface passivation layer and antireflection coating. - Advanced materials and nanosystems. - Effect of nanostructure-materials on optical properties of some rare earth ions doped in silica matrix. - Nd2Fe14B and SmCO5: a permanent magnet for magnetic data storage and data transfer technology. - Visible light induced photocatalytic activity of MWCNTS decorated sulfide based nano photocatalysts. - Organic solar cells. - Neodymium doped lithium borosilicate glasses. - Comprehensive quantum mechanical study of structural features, reactivity, molecular properties and wave function-based characteristics of capmatinib.