Orthogonal Polynomials and Special Functions


Book Description

Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.




Difference Equations, Special Functions and Orthogonal Polynomials


Book Description

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.




Difference Equations, Special Functions and Orthogonal Polynomials


Book Description

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.




Difference Equations, Special Functions And Orthogonal Polynomials - Proceedings Of The International Conference


Book Description

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.




Ordinary and Partial Differential Equations


Book Description

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.




Classical and Quantum Orthogonal Polynomials in One Variable


Book Description

The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.




Special Functions


Book Description

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.




Orthogonal Polynomials and Special Functions


Book Description

This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.




Special Functions and Orthogonal Polynomials


Book Description

A comprehensive graduate-level introduction to classical and contemporary aspects of special functions.




Special Functions of Mathematical Physics


Book Description

With students of Physics chiefly in mind, we have collected the material on special functions that is most important in mathematical physics and quan tum mechanics. We have not attempted to provide the most extensive collec tion possible of information about special functions, but have set ourselves the task of finding an exposition which, based on a unified approach, ensures the possibility of applying the theory in other natural sciences, since it pro vides a simple and effective method for the independent solution of problems that arise in practice in physics, engineering and mathematics. For the American edition we have been able to improve a number of proofs; in particular, we have given a new proof of the basic theorem (§3). This is the fundamental theorem of the book; it has now been extended to cover difference equations of hypergeometric type (§§12, 13). Several sections have been simplified and contain new material. We believe that this is the first time that the theory of classical or thogonal polynomials of a discrete variable on both uniform and nonuniform lattices has been given such a coherent presentation, together with its various applications in physics.