Different Linear and Non-Linear Form of Trapezoidal Neutrosophic Numbers, De-Neutrosophication Techniques and Its Application In Time-Cost Optimization Technique, Sequencing Problem


Book Description

In this research article, we envisage the neutrosophic number from various distinct rational perspectives & viewpoints to give it a look of a conundrum. We focused & analysed various types of linear and non-linear generalized trapezoidal neutrosophic numbers which serves an indispensable role for uncertainty concept related problem.




Linear and Non-Linear Decagonal Neutrosophic numbers: Alpha Cuts, Representation, and solution of large MCDM problems


Book Description

The postulation of neutrosophic numbers has been analyzed from different angles in this paper. In this current era, our main purpose is to mention Decagonal Neutrosophic numbers. The types of linear and non-linear generalized decagonal neutrosophic numbers play a very critical role in the theory related to uncertainty This approach is helpful in getting a crisp number from a neutrosophic number. The definitions regarding Linear, Non-Linear, symmetry, Asymmetry, alpha cuts have been introduced and large decision-making problems using fuzzy TOPSIS have been solved.




De-Neutrosophication Technique of Pentagonal Neutrosophic Number and Application in Minimal Spanning Tree


Book Description

In this current era, neutrosophic set theory is a crucial topic to demonstrate the ambiguous information due to existence of three disjunctive components appears in it and it provides a wide range of applications in distinct fields for the researchers. Generally, neutrosophic sets is the extended version of crisp set, fuzzy set and intuitionistic fuzzy sets to focus on the uncertain, hesitant and ambiguous datas of a real life mathematical problem.




Neutrosophic Sets and Systems, Vol. 35, 2020


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.




Neutrosophic Sets and Systems, vol. 51/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




Neutrosophic Sets and Systems, Vol. 47, 2021


Book Description

Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.




Neutrosophic Sets and Systems, Vol. 32, 2020


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.




Octagonal Neutrosophic Number: Its Different Representations, Properties, Graphs and De-neutrosophication with the application of Personnel Selection


Book Description

To deal with fluctations in decision-making, fuzzy / neutrosophic numbers are used. The problem having more fluctuations are difficult to sovle. Thus it is a dire need to define higher order number, also It is a very curious question by researchers all around the world that how octagonal neutrosophic number can be represented and how to be graphed? In this research article, the primarily focused on the representation and graphs of octagonal neutrosophic number. at last, a case study is done using VIKOR method based on octagonal neutrosophic number. These representations will be helpful in multi-criteria decision making problems in the case that there are large number of fluctuations. Finally, concluded the present work with future directions.




Neutrosophic Sets and Systems, Book Series, Vol. 35, 2020. An International Book Series in Information Science and Engineering


Book Description

Contributors to current issue (listed in papers’ order): Ibrahim Yasser, Abeer Twakol, A. A. Abd El-Khalek, A. A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Remya P. B, Francina Shalini, Masoud Ghods, Zahra Rostami, A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes, K.R. Vijayalakshmi, Prakasam Muralikrishna, Surya Manokaran, Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar, Rakhal Das, Binod Chandra Tripathy, Nidhi Singh, Avishek Chakraborty, Nilabhra Paul, Deepshikha Sarma, Akash Singh, Uttam Kumar Bera, Fatimah M. Mohammed, Sarah W. Raheem, Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, Iqra Nawaz, Kousik Das, Sovan Samanta, Kajal De, Xavier Encarnacion, Nivetha Martin, I. Pradeepa, N. Ramila Gandhi, P. Pandiammal, Aiman Muzaffar, Md Tabrez Nafis, Shahab Saquib Sohail, Abhijit Saha, Jhulaneswar Baidya, Debjit Dutta, Irfan Deli, Said Broumi, Mohsin Khalid, Neha Andaleeb Khalid, Md. Hanif Page, Qays Hatem Imran, Shilpi Pal, S. Satham Hussain, Saeid Jafari, N. Durga, Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad, Ali Khatami Firouzabadi, Mohammad Rahmanimanesh, Mujahid Abbas, Ghulam Murtaza, K. Porselvi, B. Elavarasan, Y. B. Jun, Chinnadurai V, Sindhu M P, K.Radhika, K. Arun Prakash, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Assia Bakali, Nivetha Martin, R. Dhavaseelan, Ali Hussein Mahmood Al-Obaidi, Suman Das, Surapati Pramanik, Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, M. Sarwar Sindhu, Tabasam Rashid, Agha Kashif, Rajesh Kumar Saini, Atul Sangal, Manisha.




On Optimizing Neutrosophic Complex Programming Using Lexicographic Order


Book Description

Neutrosophic sets are considered as a generalization of the crisp set, fuzzy set, and intuitionistic fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world problems. This paper aims to characterize the solution of complex programming (CP) problem with imprecise data instead of its prices information. The neutrosophic complex programming (NCP) problem is considered by incorporating single valued trapezoidal neutrosophic numbers in all the parameters of objective function and constraints. The score function corresponding to the neutrosophic number is used to transform the problem into the corresponding crisp CP. Here, lexicographic order is applied for the comparison between any two complex numbers. The comparison is developed between the real and imaginary parts separately. Through this manner, the CP problem is divided into two real sub-problems. In the last, a numerical example is solved for the illustration that shows the applicability of the proposed approach. The advantage of this approach is more flexible and makes a real-world situation more realistic.